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1. Objectives 
 
This program was intended to develop theory, a broad range of algorithms and proof  of concept in detection, 

estimation, and reconstruction of objects embedded in turbid media, which hamper visibility (such as fog, 

clouds, smoke, and other types of aerosol particles). In particular, the program addresses the following eight 

specific areas: 

 
 

1. We exploit recent advances in the physical design of fast optical systems which enable active imaging 

and ranging with ”ballistic” light. In this modality, fast bursts of optical energy are transmitted into a 

medium, and the ballistic component of light (which travels through a medium with minimal diffusive 

distortion) is detected in either backscatter from the target, or in trans-illuminated form through the 

medium. 

2. We simultaneously optimize the shape and duration of the optical pulses and the design of the optical 

detectors to achieve maximum signal detectability. The currently existing ballistic imaging practice has 

been based largely on ad-hoc choices of the optical waveforms, and static detector designs based on 

time-gating. 

3. We study the ballistic imaging problem as (1) a detection problem where the simple presence or 

absence of some target and its rough dimensions are sought; and (2) a reconstruction problem, where 

a full image of the object is to be obtained when possible. The first approach is based on statistical 

detection theory, whereas the second is a statistical estimation problem. 
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4. We study two complementary approaches for addressing the detection problem and improving the 

baseline performance. First, we formulate and use a forward model of the ballistic imaging process to 

enable the determination of the optimum signaling strategies. Second, to improve the detection 

performance, we adopt an active heterodyne signaling/sensing which uses temporal modulation of light 

to significantly improve the detector sensitivity by mitigating the ill effects of amplifier noise.  

5. We exploit temporal, spatial, wavelength diversity and coding for ballistic imaging. Most, if not all, 

ballistic imaging methods described in the literature employ a raster-scanned point-by-point imaging 

system. Such approaches are inherently limited as they do not take full advantage of the degrees of 

freedom in the signal space. We study the array imaging framework where multiple emitters will 

transmit coordinated pulses of light; and for their part, a collection of photon-detecting elements will 

gather the received data and compute a resultant image. In addition to this spatial component, and the 

temporal modulations introduced for the heterodyne signaling framework, the wavelength of light may 

also be used to advantage and adapted. Furthermore, there is the possibility of analyzing various ways 

of coding these pulses (e.g. transmitting sequences of pulses as is done in Ultra-Wide-Band 

communications).  

6. We study novel multi-scale approaches to the photon-limited image reconstruction problem. Recently 

developed methodology in this area will enable imaging through turbid media at very low average 

photon counts. Meanwhile, adaptive sampling strategies, motivated by the same multi-scale models, 

have also been considered. These will allow for a coarse-to-fine sampling strategy which will bootstrap 

few coarse (but less noisy) samples, to guide the selection of higher resolution samples to form a 

complete image. 

7. Theoretical models for the detection and estimation problems developed above are subjected to 

sensitivity analysis, hence yielding fundamental performance bounds in the form of (1) analytical 

relationships between minimum required SNR’s to achieve a particular detection power, and (2) mean-

squared error bounds that will demonstrate how the performance of the image estimation problem will 

depend upon the underlying physical and sensor parameters. Relationships thus derived can then be 

used to optimize system performance (e.g. by minimizing the Cramér-Rao bound for instance for an 

estimation problem.) 

8. Proof of concept is carried out in both the desk-top and the bench-top. We build simulated models of 

the forward ballistic light transport process and test the signaling strategies and detection algorithms 

with this model.  
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2. Status of Effort 
 
 

The work during the past 15 month has culminated in several peer reviewed publications, which are attached to 

this report. The topics we have addressed include the following: 

  
1. Collection of existing data for light propagation through turbid media which enabled us to move forward 

with the analytical work without having to wait for the experimental setup to be completed. As will be 

explained later in this document, aside from the data generated at our UCSC lab, we have 

experimented on several data sets generated by the leading physics research groups in the area of 

ultrafast ballistic imaging (City University of New York and Università della Tuscia, Italy).    

 

2. Forward Modeling and Simulation of ballistic and diffuse data.  A forward model of light propagation 

through turbid media allows us to formulate analytical detection and estimation problems and study the 

performance bounds.  We have combed the literature, and identified the most appropriate and  

parsimonious models which can be used to describe light propagation through turbid media. We have  

validated these models using statistical means (Adjusted R2 goodness of fit) against real data.  

 

3. UCSC laboratory setup and data collection are completed which enabled us to produce data under 

controlled conditions to aid model development and verification of the performance of proposed 

analytical algorithms. UCSC laboratory is developed in order to be flexible for active waveform design. 

Single point optical autocorrelation, and repeatable Ballistic Imaging experiments have already been 

demonstrated in this laboratory.  

 

4. Development of detection algorithms based upon ballistic and diffuse data is completed. In trans-

illumination mode, such algorithms enable the detection of objects present between a transmitting light 

source and a detector. The output of this process is a “binary” image, indicating the presence or 

absence of obstructing objects. For instance, looking down a foggy road, we can anticipate the 

presence of enemy soldiers or vehicles. We have derived ROC curves for detection of a canonical 

object using current state of the art (time-gating) methods. We showed improvement upon these ROC 

curves by developing appropriate optimal statistical signal processing methods.  

 

5. Development of image reconstruction and denoising algorithms based upon ballistic and diffuse data is 

completed. Image reconstruction allows for computation of a more sophisticated output. Namely the 

output of this stage is a gray-level image (or a sequence of images) that indicate not only the presence 
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or absence of objects, but also the relative reflectivity (in reflection mode) or opaqueness (in trans-

illumination mode) of objects of interest in the turbid medium. Using the measure of relative PSNR 

(Peak Signal to Noise Ratio), compared to the state of the art (time-gating) image capture, images 

reconstructed using methods developed by Milanfar et al. and Nowak et al. showed  improvement of 

about 10 dB relative to direct ballistic image reconstruction procedures previously proposed in the 

literature. 

 

6. Development of performance characteristics/bounds on above algorithms based upon the forward 

model is completed. Performance analysis and bounds enabled us to understand the limitations 

inherent in the solution of the detection/estimation problems. Understanding these limitations will help 

in defining what is possible and impossible. We have already provided analytical  formulae for 

predicting bias, variance (or lower bounds to these) for detection/estimation algorithms.  

 

7. Development of waveform design methodologies to maximize the performance of the above 

detection/reconstruction algorithms. Using the performance metrics defined above, better design of 

waveforms and corresponding light detectors will enable improve visibility in turbid media. Some 

preliminary theoretical work has been already conducted and further work is underway.. 

 

 

 

3. Accomplishments 
     Below we present the abstracts of our key recent accomplishments which detail the progress made to date 

on problems of concern to this program.  
 

• We have investigated and validated a computationally efficient, yet sufficiently accurate mathematical 

model for light propagation in homogeneous (target absent) and inhomogeneous (target present) turbid 

media. 

 

•  We have derived the fundamental limits on the accuracy of the estimated parameters of the said 

mathematical model of an unknown turbid medium. This study also guides us toward the most efficient 

experiments (with respect to both time/accuracy) for calibrating the model parameters of the unknown 

turbid medium as well as the optical properties of the target (which can be used to identify/categorize 

it). Our simulation results show that for the medium of most interest, namely heavy fog; optical 

parameters can be estimated with very high accuracy. These experiments are equally valid in 

assessing the effectiveness of our imaging techniques in virtually any unknown turbid medium. 
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• We used the said model to derive optimal statistical tests for detecting objects hidden in turbid media. 

Performance analysis was carried out by computing ROC curves for the proposed optimal tests, 

showing that by considering only the ballistic photons, we are able to detect opaque objects hidden in 

heavy fog in the range of approximately 380 meters (i.e. 30 mean-free paths or MFP's). Detection rate 

of the semi transparent objects are shown to be slightly less than this distance. 

 

• To further improve the detection rate of the aforementioned single pixel optimal detectors and 

penetrate longer distances in turbid media, we exploited sampling at a diversity of locations in space. 

We then developed an algorithm based upon the Generalized Likelihood Ratio Test (GLRT) framework 

which takes advantage of the spatial correlation of nearby samples. In several experiments, we 

showed that objects of different size and shape that are completely unrecognizable using the common 

single pixel detection techniques, are detectable with very high accuracy using the said multi-scale 

technique. 

 

•  Considering the effect of diffraction in turbid media, we have derived a lower bound on the achievable 

spatial resolution of the proposed imaging systems. A basic example of such study is that it is 

theoretically possible to resolve, with high accuracy, opaque objects of radius on the order of 6mm in 

heavy fog at a distance of 200 meters. 

 

• To penetrate farther in turbid media, and more importantly to reduce the image scanning time, we have 

studied and experimented on several adaptive sampling techniques. The experiments preformed using 

our ballistic imaging laser scanner at UCSC, demonstrate that we may reduce the scanning (imaging) 

time by as much as a factor of 60 (depending on the shape/size of the target), which is extremely 

important for imaging in hostile battlefield environments. A theoretic study on the expected gain (in 

Mean Square Error term) of our proposed adaptive sampling technique is also derived and presented. 

 

• Since the output of adaptive scans are in general irregularly sampled images, we have developed 

optimal image reconstruction algorithms to effectively reconstruct a high resolution image from a set of 

irregularly sampled, blurry, noisy images. Moreover, our image reconstruction technique is especially 

useful as the proposed time resolved holistic imaging system exploits diffused photons as well as the 

ballistic ones.  
  

• We established the performance tradeoffs between transillumination (TRT) imaging and conventional 

(un-gated) imaging. On the one hand, time-gated, First arrival photons are unscattered and therefore 

provide very high spatial resolution. But, very few photons arrive at the detector without scattering, 

effectively resulting in a very low SNR. On the other hand, conventional (un-gated) imaging is based on 
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all photons (scattered and unscattered), resulting in lower spatial resolution, but higher SNR (due to 

the large number of photons). This tradeoff was analyzed using a decision-theoretic approach to 

ascertain bounds on the minimum resolvable occluding object size with and without time-gated photon 

acquisition. The theoretical predictions are validated through a realistic simulation of tumors in breast 

tissue. Our mathematical analysis clearly indicates in which regimes (of turbidity and scattering) TRT 

imaging outperforms conventional imaging.  These theoretical predictions match very well with 

experimental results.  We also developed a novel algorithm for TRT image reconstruction, based on 

the principle of Maximum Likelihood Estimation. The innovative algorith combines multiple snapshot 

observations of time-gated photons to reconstruct a high-resolution, low-noise image. In effect, the 

algorithm allows us to obtain the "best-of-both-worlds" by combining the spatial resolution of the first-

arrival photons, with the higher SNR provided by scattered photons. 

 

• We set up a ballistic imaging laboratory at UCSC, enabling us to capture ballistic images with what can 

be thought of as the "optimal" (500fs) time resolution, as this is virtually the resolution of the generated 

ballistic pulses. 

 

4. Personnel Supported 
 

Peyman Milanfar, PI 

Benjamin Friedlander, Co-PI 

Ali Shakouri, Co-PI 

Michael Isaacson, Co-PI 

Robert Nowak, (Univ. of Wisconsin) Co-PI 

Jonathan Saint Clair, (Boeing Co.) Co-PI 

 

Post-docs: 

Sina Farsiu 

James Christofferson  

 

Graduate Students: 

Brian Eriksson  

Priyam Chatterjee 

Hae Jong Seo 
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5. Peer-reviewed Technical Publications 
 
“Maximum Likelihood Methods For Time-resolved Imaging Through Turbid Media”, 

Eriksson, B., Nowak, R., in Proc. of the International Conference on Image Processing, Atlanta, GA, October 

2006, pp 641-644 

 

“Robust Kernel Regression for Restoration and Reconstruction of Images from Sparse, Noisy Data”  

Takeda, H., S. Farsiu, P. Milanfar,  in Proc. of the International Conference on Image Processing, Atlanta, GA, 

October 2006, pp1257-1260 

 

“A Decision-Theoretic Approach to Transillumination Imaging in Biological Mediums”, B. Eriksson And R. 

Nowak, Proceedings of the IEEE International Symposium on Biomedical Imaging, April 2007. 

 

“Statistical Detection and Imaging of Objects Hidden in Turbid Media Using Ballistic Photons”, S. Farsiu, J. 

Christofferson, B. Eriksson, P. Milanfar, B. Friedlander, A. Shakouri, R. Nowak, Applied Optics, vol. 46, no. 23, 

pp. 5805-5822, Aug.2007. 

 

"Multi-Scale Statistical Detection and Ballistic Imaging Through Turbid Media", S. Farsiu and P. Milanfar, In 

proceedings of the IEEE International Conference on Image Processing (ICIP), San Antonio, TX, Sept. 2007. 

 

“Resolution Bounds and Reconstruction Techniques for Time-Resolved Transillumination Imaging”, B. 

Eriksson, and R. Nowak, Submitted to IEEE Transactions on Image Processing, July 2007 

 

6.  Interactions/Transitions 
 
The PI, Co-PIs and Post-docs have presented 17 invited talks in the course of this project. These have resulted 

in excellent technical interactions and dissemination of our work. In many cases, the talks have motivated 

members of the audience to look at the research problems we are posing, and therefore we believe our work 

has spurred a healthy amount of new activity in application of statistical signal processing methods to imaging 

problems. In some cases, these applications have been in unexpected areas such as medical imaging.   

 

6.1 Invited Presentations 
 
Invited Speakers, Peyman Milanfar, Ali Shakouri, Robert Nowak, Waveforms for Active Sensing Program  Kick 

Off Presentations, Washington D.C., Sept 2005 
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Invited Speakers, Peyman Milanfar, Ali Shakouri, Robert Nowak, Benjamin Friendlander, Waveforms for Active 

Sensing Program, First Program Review Presentations, Portland, OR, March, 2005 

 

Invited Speaker, Peyman Milanfar, Air Force Office of Scientific Research TCATS Workshop, Tucson, AZ, 

2006 

 

Invited Speaker, Peyman Milanfar, DARPA Waveforms for Active Sensing Workshop, Portland, OR, 2006 

 

Invited Speaker, Peyman Milanfar, European Signal Processing Conference, Florence, Italy, 2006 

 

Invited Speaker, Peyman Milanfar, SIAM Conference on Imaging Science, Minneapolis, MN, 2006 

 

Invited Speaker, Sina Farsiu, Department of Electrical and Computer Engineering, University of Wisconsin, 

Madison,  WI, May, 2006 

 

Invited Speaker, Sina Farsiu , Waveforms for Active Sensing Program,  Second Program Review Presentation, 

San-Agustin, FL, September, 2006 

 

Invited Speaker, Peyman Milanfar, International Conference on Image Processing, Atlanta, GA, Oct. 2006 

 

Invited Speaker, Robert Nowak, International Conference on Image Processing, Atlanta, GA, Oct. 2006 

 

Invited Speaker, Sina Farsiu, Duke University Eye Center, Durham, NC, Feb 2007   

 

Invited Speaker, Sina Farsiu, Biomedical Engineering Department, Duke University, Durham, NC, Feb, 2007 

 

Invited Speaker, Sina Farsiu, Sony Electronics, San Jose, CA, Feb. 2007   

 

Invited Speaker, Peyman Milanfar Conference on Applied Inverse Problems, Vancouver, BC, Canada, June 

2007 

 

Invited Speaker, Peyman Milanfar , AFOSR Sensing Program Review, Harvard Univ., Cambridge, MA June 

2007 

 

Invited Speaker, Peyman Milanfar, SENSIP Center, Arizona State University, Tempe, AZ, March 2007 
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Invited Speaker, Peyman Milanfar, Center for Advanced Signal and Image Sciences, Lawrence Livermore 

National Labs, April 2007 

 

 

 
6.2 Interactions  
 

Aside from the interactions between the group members, and the members of the other groups in this program, 

we have made contacts with many prominent researchers in the academic community. Below we list a number 

of university colleagues who have been consulted: 

 

• Prof. Ines Delfino 

      Biophysics & NanoScience Centre 

            CNISM - Unità di Ricerca di Viterbo 

            Dipartimento di Scienze Ambientali - 

            Università della Tuscia, Largo dell'Università, 01100 Viterbo, 

            ITALY 

 

• Prof. Robert R. Alfano’s Group especially Dr. M. Alrubaiee 

 Department of Science And Engineering 

            City College and Graduate School, City University of New York 

            USA 

 

• Prof. Stefan Dilhaire 

 Centre de Physique Moléculaire Optique et Hertzienne – UMR 5798 

             University of Bordeaux, 

             France 
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We exploit recent advances in active high-resolution imaging through scattering media with ballistic
photons. We derive the fundamental limits on the accuracy of the estimated parameters of a mathematical
model that describes such an imaging scenario and compare the performance of ballistic and conventional
imaging systems. This model is later used to derive optimal single-pixel statistical tests for detecting objects
hidden in turbid media. To improve the detection rate of the aforementioned single-pixel detectors, we
develop a multiscale algorithm based on the generalized likelihood ratio test framework. Moreover, con-
sidering the effect of diffraction, we derive a lower bound on the achievable spatial resolution of the proposed
imaging systems. Furthermore, we present the first experimental ballistic scanner that directly takes
advantage of novel adaptive sampling and reconstruction techniques. © 2007 Optical Society of America

OCIS codes: 100.0100, 030.6600, 140.0140, 320.0320.

1. Introduction

High-resolution imaging and detection of objects hid-
den in a turbid (scattering) medium have long been
challenging and important problems with many
industrial, military, and medical applications. Al-
though turbid media such as fog, smoke, haze, or
body tissue are virtually transparent to radar range
electromagnetic waves, the resolution of radar-based
imaging systems is often insufficient for many prac-
tical applications. Moreover, in some instances the
transparency characteristics of certain objects (tar-
gets) and the medium are very close in the radar
range spectrum, making them practically indistin-
guishable from each other. On the other hand, al-
though the resolution of imaging systems using
ultrashort wavelengths (e.g., x rays) is desirable,
there exist potential health hazards for imaging sub-
jects and technicians alike.

As an alternative, imaging systems working in the
optical–infrared spectrum range (laser scanners) are

potentially able to produce high-resolution images
without the likely health hazards. Unfortunately,
even a very thin and powerful collimated laser beam
quickly diffuses as it travels in turbid media, similar
to a car’s headlights in fog. Therefore, a naive ap-
proach to optical imaging of objects hidden inside a
turbid medium results in blurry images where tar-
gets are often indistinguishable from each other or
the background.

Fortunately, the advent of the new tunable solid-
state lasers and ultrafast optical detectors has en-
abled us to acquire high-quality images through
turbid media where the resolution is only limited by
diffraction. Although many efficient imaging systems
for capturing high-resolution images through turbid
media have been proposed throughout the years [1],
in this paper we mainly focus on ultrafast time-gated
or coherent imaging systems [2]. We note that the
proposed methods and analysis are valid and appli-
cable for a great range of imaging systems including
optical coherence tomography [3] and x-ray imaging
systems.

Ultrafast time-gated imaging is based on scanning
the region of interest (ROI) point by point by sending

0003-6935/07/235805-18$15.00/0
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fast bursts of optical energy (laser pulses) and detect-
ing the unscattered (coherent) photons that have
passed through the medium or reflected from the
object. Although most of the photons in a laser pulse
are either randomly scattered (losing their coher-
ence) or absorbed as they travel through turbid me-
dia, across short distances, a few photons keep their
coherence and pass through in straight lines without
being scattered. These coherent photons are com-
monly referred to as the ballistic photons. Aside from
the diffusive and ballistic photons, the photons that
are slightly scattered, retaining some degree of co-
herence, are referred to as snake photons.

In what follows in this paper, we focus on studying
and improving the performance of ballistic imaging
systems. In Section 2, we describe a statistical model
for the signal and noise in a typical ballistic imaging
scenario. Furthermore, we describe optimal methods
for characterizing the optical properties of the scat-
tering medium and the semitransparent objects in-
side it. In Section 3, we study the performance limits
of optimal single-pixel detection systems. Moreover,
we show that better detection rates are achievable
using a multipixel detection technique based on the
generalized likelihood ratio test (GLRT) principle.
The effect of diffraction on the detection rate is dis-
cussed in Section 4. In Section 5, we describe a lab-
oratory setup for detecting ballistic photons and
capturing high-resolution images through turbid me-
dia, where real experimental data are presented to
further clarify the concept of ballistic imaging. In
Subsection 5.B, we describe an adaptive sampling
scheme that effectively reduces the image acquisition
time, making ballistic imaging more suitable for
practical applications. A summary and future work
directions are given in Section 6, which concludes this
paper.

2. Statistical Model for Ballistic Imaging Systems

To have a better understanding of the practical issues
involved in photon-limited imaging via ballistic sys-
tems, let us consider the imaging system described by
Zevallos et al. [4] where the pumped Ti:sapphire laser
radiates 800 nm pulses at a repetition rate of 1 kHz
and an average power of 60 mW. It is easy to show
that the energy delivered by the laser during each
pulse is

epulse �
60 � 10�3 � 1 s

1000 � 6 � 10�5 J,

and the energy of each photon is computed as

e � hf �
hc
�

� 2.4830 � 10�19 J,

where h � 6.626 � 10�34 is Planck’s constant, c �
299, 792, 458 m�s is the speed of light, and � �
800 nm is the wavelength. Now the number of
photons in each packet of energy (pulse) is easily

computed as

I0 �
6 � 10�5

2.4830 � 10�19 � 2.4164 � 1014 photons. (1)

Because of the statistical nature of pulse propaga-
tion, as a laser beam travels through a diffusive me-
dium, it is possible that some of the photons emerge
without being scattered. By selecting these unscat-
tered ballistic photons and rejecting the scattered
(diffused) ones, it is possible to obtain nonblurred
images that are the sharp shadows of targets buried
in the diffusive medium.

Since the diffusive and ballistic photons have dif-
ferent path lengths, a femtosecond laser pulse gen-
erator and an ultrafast time gate can be paired to
separate the relatively slow (delayed) diffusive pho-
tons from the ballistic ones. We will say more on a
practical setup of a ballistic photon imaging system in
Section 5. In what follows in this section, we focus on
modeling the detected ballistic photons and noise
from a statistical point of view.

A. Modeling Received Signal Power

As expected, in relatively long distances, the number
of detected ballistic photons is extremely small. In-
deed, Beer’s law [5] dictates an exponential relation-
ship between the intensity of the transmitted light
and that of the ballistic component as

Ib � I0 exp��
d
L�. (2)

In this expression, I0 is the number of the generated
photons in one laser pulse before entering the turbid
medium, Ib is the number of the ballistic photons that
survive traveling through the medium, d is the dis-
tance traveled through the medium, L � 1��t is the
mean free path (MFP) length (average distance pho-
tons travel before being scattered), and �t � �s

� �a is the medium extinction factor (the summation
of scattering and absorptive coefficients, respec-
tively). From Eqs. (1) and (2), it is clear that for the
laboratory imaging systems with laser power of the
order of the one described by Zevallos et al. [4], it is
fairly unlikely that any ballistic photon survives im-
aging scenarios where the ratio of d�L is larger than
�30 MFPs. In Appendix A, we have included a de-
tailed decision-theoretic study for defining the critical
distance after which the conventional (non-time-
gated) imaging systems are preferred to the time-
gated ballistic systems.

The exponential drop in the number of received
photons is the main prohibitive factor for using such
high-resolution optical imaging systems across long
distances. In such imaging scenarios, we are forced to
rely on the less immediately informative (due to the
inherently severe blur) snake and diffusive photons.
In recent literature [6,7], an accurate yet computa-
tionally manageable mathematical model for diffu-
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sive light propagation in turbid media is presented.
Cai et al. [8] analyzed and experimented on such an
imaging modality and Das et al. [9] and Gibson et al.
[10] presented some excellent literature surveys on
the subject of diffusive imaging systems. However,
imaging systems that are able to time resolve both
ballistic and diffusive photons are rather expensive
(e.g., a gated optical intensifier camera costs about
$100,000) and are not discussed in this paper. Here,
we focus on and derive fundamental performance lim-
its for imaging systems that detect ballistic photons
only. We exploit these statistical studies to improve the
performance of ballistic imaging systems even in long
distances where the signal power is weak.

It is important to note that because of the stochas-
tic nature of photon propagation, Ib, calculated in Eq.
(2), is merely the expected value of a Poisson random
variable that estimates the number of surviving bal-
listic photons. Moreover, we assume that the received
signal at the detector is contaminated with some
amount of independent Poisson noise due to shot
noise and other degrading effects. Therefore, since
the received signal at the detector is the unweighted
summation of two Poisson random variables, it can be
modeled as a Poisson random process with the fol-
lowing expected value:

I � I0 exp���td� � Xe � Xs � Xe,

where Xe and Xs are the expected values of the noise
and signal, respectively. Note that weighted summa-
tion of Poisson random variables in general is not
Poissonian, which in some cases can be approximated
as a truncated Gaussian distribution [11]. However,
summation of Poisson random variables with integer
weights is yet another Poisson random variable.

B. Characterizing the Optical Properties of the Medium in
the Absence of Targets

Accurate characterization of the scattering medium’s
optical properties is essential for designing optimal
detectors. Since light propagation in ballistic imaging
systems is described by the single-parameter Beer’s
law model, we are mostly interested in measuring
(characterizing) the medium or semitransparent ob-
ject’s extinction factor.

In the imaging model of Subsection 2.A, the re-
ceived signal is modeled as a Poisson random vari-
able with probability density function

f��y|X�s � X�e� � �
k�1

N e��Xek
�Xsk��Xek

� Xsk�yk

yk! , (3)

where yk is the kth measurement, �y � �y1, y2, . . . ,
yk, . . . , yN	T, X�e � �Xe1

, Xe2
, . . . , Xek

, . . . , XeN
	T, and

X�s � �Xs1
, Xs2

, . . . , Xsk
, . . . , XsN

	T. Note that the laser
emits thousands of pulses per second and in practical
implementation each spatial position is measured N
times to improve the quality of estimation, and there-
fore the model in Eq. (3) is presented in vector form.

Since the average power of the laser or the detector
(and medium) characteristics are assumed not to be
changing abruptly, to simplify notations, we assume
that Xe1

� Xe2
� . . . � XeN

� Xe and Xs1
� Xs2

� . . .
� XsN

� Xs (extension to the more general time-
varying signal and noise case is straight forward).
The maximum likelihood (ML) estimate of the
medium’s extinction factor is given by

� log�f��y�X�s � X�e�	
��t

� 0 ) �̂t �

ln��
NI0

NXe � 

k�1

N

yk
�

d .

Study of the Fisher information matrix (FIM) de-
termines the accuracy of the above estimation
scheme. Each element of this matrix can be computed
[12] as

�i,j � �E
�2 log�f��y�X�s � X�e�	

�	i�	j
� 


k�1

N � 1
Xe � Xsk

�Xsk

�	i

�Xsk

�	j
�,

where E is the expected value operator and 	k is the
kth parameter of the model. For the case of charac-
terizing the extinction factor of the medium, the FIM
has only one element:

���t� �
NI0

2d2e�2�td

Xe � NI0e
��td

.

Note that an unbiased estimator can be found that
attains the Cramér–Rao bound (CRB), which defines
a lower bound on the covariance of any unbiased
estimator [13], if and only if the estimator is a linear
transformation of the gradient of the log-likelihood
(score) function [13,14]

� log�f��y�I0e
��td � Xe�	

��t
�
?

���t���̂t � �t�.

Now, since

� log�f��y�I0e
��td � Xe�	

��t
� ���t��I0de��td�Xe � I0e

��td�

�
I0de��td

N 

k�1

N

yk�,

it is clear that no efficient estimate of the extinction
parameter can be found and such estimates will al-
ways be biased. This suggests that, in general, the
lower bound on the variance of such an estimator
cannot be computed by simply inverting the Fisher
matrix element. Fortunately, we can numerically
show that for the turbid media that are of most in-
terest to us [such as [15] heavy fog ��t � 12.5�1

m�1�, light fog ��t � 125�1 m�1�, and haze ��t �
505.05�1 m�1�], the bias component relative to the
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variance is small and can be ignored. Therefore the
CRB on the variance can be expressed as

Var��t� 

Xe � I0e

��td

NI0
2d2�e��td�2. (4)

Aside from theoretical analysis, in practice, this sim-
ple closed-form expression of the lower bound to the
variance of the estimate can help us design optimal
experiments to characterize the optical properties of
the medium and the target.

For example, the CRB analysis helps us find the
optimal distance between the laser and the detector
for estimating the medium extinction factor. Figure
1(a) shows the setup of this numerical experiment,
where the black dot represents the position of the
laser and the lighter (red) dots represent the possible
locations of the detector. The optimal distance mini-
mizing the lower bound on the estimator variance can
be easily calculated by differentiation of Eq. (4) with
respect to the distance (d). Figure 1(b) shows the
estimated bias for this experiment (via 60,000 Monte
Carlo experiments), which are small and negligible.
In Fig. 1(c), we have plotted the summation of the
numerically experimented bias (squared) and the
minimum variance (solid curves) and the CRB (dot-
ted curves) predicted from Eq. (4), which perfectly fit
the numerically experimented results in shorter dis-
tances. These plots suggest that, for calibrating
heavy fog, the optimal distance between the laser and
the detector is less than 100 m, whereas such a dis-
tance for light fog is of the order of a few hundred
meters and for haze is of the order of 1 km. Note that
the dotted curves (numerically experimented results)
in Figs. 1(b)–1(c) are discontinued after certain dis-
tances. The reason for such discontinuity is that in
long distances, where the signal power is about the
same as the noise level, the estimated bias is not
negligible and abruptly tends to infinity. Therefore,
the proposed CRB formulation (4), depending on the
scattering properties of the medium, is only valid up
to some distance as plotted in Fig. 1. Practically, this
is of no concern, since these distances are away from
the optimal calibration distance.

C. Joint Characterization of the Medium and the Target’s
Optical Properties

A related and more practical problem, namely, char-
acterizing the optical properties of an object located
inside an unknown turbid medium, requires two in-
dependent sets of experiments. The first set of exper-
iments is performed in the absence of the object (and
repeated N1 times to improve the accuracy) and the
second set of experiments is performed in the pres-
ence of the presumed object (and repeated N2 times).
Figure 2 illustrates such an imaging scenario, for
which we can easily derive the ML estimates of the
medium and the object (inclusion) extinction factors as

�̂t �

ln��
N1I0

N1Xe � 

k�1

N1

yk
�

d ,

�̂tinc
�

d ln��
N2I0

N2Xe � 

k�1

N2

yk
�� �d � dinc�ln��

N1I0

N1Xe � 

k�1

N1

yk
�

ddinc
,

respectively, where dinc is the thickness of the ob-
ject.

The general FIM formulation of Eq. (4) can be ex-
ploited for both of these imaging scenarios. In this

Fig. 1. (Color online) Optimal distance for calibrating the medium extinction factor for heavy fog, light fog, and haze. (a) Experimental
setup, where the detector is moved to different locations [marked by lighter (red) dots] inside the turbid medium. (b) Bias of estimation
that is calculated over 60,000 Monte Carlo simulations. (c) Summation of squared bias and variance (solid curves) that is dominated by
the variance component and perfectly fits the predicted results from CRB formulation (dotted curves) in short distances.

Fig. 2. (Color online) Experimental setup for characterizing the
optical properties of the medium ��t� and a semitransparent object
��tinc

�.
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case, the CRBs are derived from the inverse of a
�2 � 2	 FIM, the diagonal elements of which define
the variance bounds:

Var��t� 

Xe � I0e

��td

N1I0
2d2�e��td�2,

Var��tinc� 

�e2�td�2�tdinc�2�tincdinc

I0
2d2N1dinc

2N2

� � �N1d
2Xe � N1d

2e��td��tdinc��tinc
dincI0

� N2e
2�tdinc�2�tincdincd2Xe

� N2e
��td�2�tdinc�2�tincdincd2I0

� 2N2e
2�tdinc�2�tincdincddincXe

� 2N2e
��td�2�tdinc�2�tincdincddincI0

�N2e
2�tdinc�2�tincdincdinc

2Xe

� N2e
��td�2�tdinc�2�tincdincdinc

2I0�. (5)

As an illustrative example, we fixed N1 and N2 to 50
each, Xe � 20, and assumed that semitransparent
objects with extinction factors of �tinc

� 0.124, �tinc
� 1.24, and �tinc

� 12.4 and 1 m thickness are present
inside heavy fog. In Fig. 3, we compared the numer-
ically experimented squared bias and variance (via
5000 Monte Carlo simulations) to the CRB limit, as-
suming that the distance between the laser and the
detector are variant between 50 and 300 m. The re-
sults basically show that the numerically experi-
mented and CRB values of the medium extinction
factor in all cases are indistinguishably close to
each other. On the other hand, as the inclusive
object becomes more opaque, the theoretic CRB and
numerically experimented variance diverge from
each other.

3. Performance Analysis of Pixelwise Optimal
Detectors

In this section, assuming that the laser, target, and
turbid medium are accurately calibrated, we study
the performance bounds of optimal detectors in the
presence of opaque or semitransparent objects.

A. Detecting Opaque Objects

In this subsection, we study the performance of the
Neyman–Pearson (NP) type statistical test [16] for
detecting opaque objects hidden in a turbid medium
versus distance. In this test, we basically compare the
likelihood of the following two scenarios:

Y �0: An opaque object is hidden in the scattering
medium, blocking the laser pulse (i.e., measurements
contain only noise).

Y �1: No opaque object exists in the propagation
line of the laser pulse (i.e., measurements contain
noise plus an attenuated laser pulse).

The probability density function of these two sce-
narios when such tests are repeated N times are

given by

�0 : f��y�Xe� � �
k�1

N e��Xe��Xe�yk

yk! ,

�1 : f��y�Xs � Xe� � �
k�1

N e��Xe�Xs��Xe � Xs�yk

yk! , (6)

and therefore the NP test is derived by comparing the
log-likelihood ratio to a threshold as

log �
k�1

N 
e��Xe�Xs��Xe � Xs�yk

yk!

e�Xe�Xe�yk

yk!

� �
�0

�1

 ) 

k�1

N

yk �
�0

�1 log�� � NXs

log�Xe � Xs

Xe
� � �.

(7)

Noting that 
k�1
N yk is yet another Poisson process,

the probabilities of false alarm �PFA� and detection
�PD� are computed as

PFA � P�

k�1

N

yk 
 ���0�� 

k���1

� e�NXe�NXe�k

k!

� 1 � 

k�0

� e�NXe�NXe�k

k! � 1 � CDF�NXe�, (8)

PD � P�

k�1

N

yk 
 ���1�� 

k���1

� e�NXe�NXS�NXe � NXS�k

k!

� 1 � 

k�0

� e�NXe�NXS�NXe � NXS�k

k!
� 1 � CDF�NXe � NXS�, (9)

where CDF is the cumulative distribution function of
a Poisson random variable. Note that, in some scien-
tific communities, the false alarm is commonly re-
ferred to as a false positive and detection is referred
to as a true positive.

Figure 4(a) shows the receiver operating character-
istics (ROC) (PD versus PFA) curves for detecting
opaque objects in heavy fog, considering a detector
with Xe � 20 and a laser power as in Eq. (1). This
experiment shows that, by using only ballistic pho-
tons, it is possible to reliably detect the existence (or
absence) of opaque objects in this scattering me-
dium up to a distance of �30 MFPs. Figure 4(b)
shows the system performance curves by fixing the
false alarm rate �PFA� at 0.0015, 0.015, and 0.15 val-
ues and plotting the detection rate versus distance
(PD versus d).

B. Detecting Semitransparent Objects

Detection of semitransparent objects is based on dif-
ferentiating between the following two imaging sce-
narios:

Y �0: A semitransparent object is hidden in the
scattering medium, partially blocking the laser pulse
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(i.e., the measurement is noise plus signal attenuated
by both the medium and the target).

Y �1: No semitransparent object exists in the
propagation line of the laser pulse in the scattering
(i.e., measurement is noise plus signal attenuated by
the medium).

The number of ballistic photons in the attenuated
signal that travel through both the medium and the
semitransparent object is calculated as

Xsinc
� I0e

��tinc
dinc��t�d�dinc�,

where �tinc
and dinc are the extinction factor and the

thickness of the object, respectively. Based on this
model, a NP detection rule is derived as



k�1

N

yk �
�0

�1 log�� � N�Xsinc
� Xs�

log�Xe � Xsinc

Xe � Xs
� � �. (10)

Fig. 3. (Color online) Comparison of the bias and variance from 5000 Monte Carlo simulations (numerically experimented) and the
estimated CRB values of the medium and the semitransparent target’s optical properties versus distance. The bias, variance, and CRB
of the medium extinction factor are compared in (a), (b), and (c). The bias, variance, and CRB of the target’s extinction factor are compared
in (d), (e), and (f).
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The probabilities of false alarm and detection are
computed as

PFA � P�

k�1

N

yk 
 ���0�� 

k���1

� e�NXe�NXs�NXe � NXs�k

k!

� 1 � 

k�0

� e�NXe�NXs�NXe � NXs�k

k!
� 1 � CDF�NXe � NXS�, (11)

PD � P�

k�1

N

yk 
 ���1�� 

k���1

� e�NXe�NXsinc�NXe � NXsinc�k

k!

� 1 � 

k�0

� e�NXe�NXsinc�NXe � NXsinc�k

k!
� 1 � CDF�NXe � NXsinc�. (12)

Figure 5 shows the ROC curves for detecting a
semitransparent object in heavy fog. In this experi-
ment using a laser and detector similar to the ones in
Subsection 3.A, the distance was fixed at 300 m,
which according to Fig. 4 delivers almost perfect de-
tection for opaque objects. Figure 5(b) shows the sys-
tem performance curves by fixing the false alarm rate
�PFA� at 0.00015, 0.0015, and 0.015 values and plot-
ting the detection rate versus the object’s extinction
factor �PD versus �tinc

�. As expected, this experiment
shows that the detection performance deteriorates as
the object becomes less opaque.

C. Multipixel GLRT Detection

As explained in Subsection 2.A, in ballistic imaging
the field of view is scanned at multiple points to cre-
ate a 2-D image of the objects in the ROI. In this
subsection, we propose an effective algorithm that

Fig. 4. (Color online) (a) ROC plots at different distances for detecting opaque objects in heavy fog ��t � 12.5�1 m�1� and Xe � 20. (b) By
fixing the PFA at different values, the detection rate �PD� is plotted versus the distance.

Fig. 5. (Color online) (a) ROC plots for detecting transilluminative objects at 300 m distance in heavy fog ��t � 12.5�1 m� and
Xe � 20. (b) By fixing the PFA at different values, detection rate �PD� is plotted versus the object’s transparency ��tinc

�.
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exploits the spatial correlation of the nearby samples
in a multipixel imaging scenario to improve on the
performance of the single-pixel optimal detectors de-
veloped in the previous section.

The proposed multipixel detection technique gen-
eralizes the single-pixel detection techniques and
performs tests on superpixels, which are the collec-
tive intensities of a set of neighboring pixels in size
and shape of the hidden objects. However, since in
general the size and shape of the hidden objects is not
known a priori, we develop a GLRT-based algorithm
that simultaneously tests the existence and also es-
timates the shape and size of the objects hidden in
turbid media.

The outline of the proposed GLRT algorithm is
illustrated by an example in Fig. 6. First, for a given
(fixed) false alarm rate the optimal detectors devel-
oped in the previous section are exploited to test the
existence or absence of objects at each individual
pixel. As an illustrative example, this test is applied
to the central pixel (shaded) of Fig. 6(a), where the
measured pixel value (0.4) is compared with the NP

test threshold (0.5). Of course, the greater the dis-
tance of the measurement from the threshold, the
more confident we are in the accuracy of the test
result. Next, we integrate the gray-level values of all
immediate neighboring pixels, and in effect consider
them as one superpixel, as illustrated in Fig. 6(b).
Since the false alarm rate is fixed for all scales, the
decision threshold is different than the threshold cal-
culated in the previous step, which is recalculated
based on the gray-level value of the superpixel. In the
next steps, we repeat this process by fixing the false
alarm rate and considering larger neighborhoods.
The generalized NP test for these steps is formulated
as follows:

ym,l
scale �

�0

�1 log�scale� � NscaleXs

log�Xe � Xs

Xe
� , (13)

where ym,l
scale is the summation of the pixel values in

the Nscale � N�2 � scale � 1�2 pixels neighborhood
around the pixel at position [m, l]. Our confidence in
the decision made on each scale is simply defined as
the distance between the summation of measure-
ments in the superpixel and that of the threshold set
by the GLRT:

Confidencem,l
scale � �ym,l

scale �
log�scale� � NscaleXs

log�Xe � Xs

Xe
� �.

(14)

Finally, we decide on the presence or absence of the
object at a particular pixel based on the test result of
the scale that shows the highest confidence value.
Note that the optimal scale is not unique for all pix-
els, as finer scales are more suitable for pixels located
on the texture or edge areas, and coarser scales are
more suitable for the pixels located in flat areas. The
memory requirements of this technique are indepen-
dent of the maximum scale number, since we only
need to keep the original image, the last estimated
image, and the corresponding confidence values.

To have a better understanding of the proposed
multiscale GLRT technique and its performance, we
set up an illustrative controlled imaging scenario.
Figure 7(a) shows an ideal (noiseless and determin-
istic) image of objects of different sizes and shapes. To
depict an experiment at the limit distance where the
signal of interest is weak, we consider an imaging
scenario in which the average number of received
ballistic photons for each pixel is one photon. Figure
7(b) shows such Poisson random signals (free of ad-
ditive noise effect).

Detection of such signals becomes more difficult
when we consider the system noise as illustrated in
Figs. 8(a) and 9(a), where the Poisson noise variances
(mean) are 20 and 40, respectively. Figs. 8(b) and 9(b)
are images reconstructed by implementing the point-

Fig. 6. (Color online) Illustrative example showing the outline of
the proposed multiscale GLRT algorithm. The check-marked sec-
ond scale gives the highest confidence value for the central pixel.

5812 APPLIED OPTICS � Vol. 46, No. 23 � 10 August 2007



by-point single-pixel detection techniques, consider-
ing a false alarm rate of 0.00125, where none of the
objects are correctly identified. On the other hand,
Figs. 8(c) and 9(c) are the results of exploiting the
multiscale GLRT techniques, showing a considerably
more accurate detection of such objects. Figures 8(d)
and 9(d) illustrate the scale from which each pixel in
the final images of Figs. 8(c) and 9(c), respectively,
are selected. Note that, as expected, the pixels in the
flat area are selected from the coarser scales, whereas
the pixels on the edge areas are selected from the
finer scales. Figures 8(e) and 9(e), show the confi-
dence in the detection result (14) with respect to the
corresponding pixels. These figures show higher con-
fidence levels in the flat and less confidence in the

edge areas. Also, in Fig. 9(e) we see that the area with
the lowest confidence is the place where most mis-
classifications happen. This is good news, since to
increase the detection rate, we may opt to do a second
(and faster) round of scans, sampling only on these
very low-confidence regions. In Figs. 8(f) and 9(f), we
plot the misclassification rates at each scale (curve),
and compare it with the overall multiscale rate (line).
These numerically experimented plots show that the
performance of the proposed pixelwise GLRT tech-
nique (depending on the noise level) is either very
close to [Fig. 8(f)] or even better than [Fig. 9(f)] the
best fixed-scale technique. In Figs. 10(a) and 10(b),
the performance of the single-pixel detection tech-
nique is compared with the multiscale ones via their
corresponding ROC curves. Once again, the multi-
scale technique shows the best or close to the best
performance.

4. Diffraction Effects

So far in this paper, all detection tests and related
performance analysis were derived based on a sim-
plified model of light propagation that ignores diffrac-
tion. Although such approximation works well for
many practical applications, it is not a suitable model
for detecting or imaging relatively small sized objects.
In this section, we present statistical analysis of the
resolution limits in ballistic imaging systems by de-
fining the smallest size of resolvable objects in a tur-
bid medium at given false alarm and detection rates.

Fig. 7. (a) Ideal deterministic and noise-free image of four objects
of different sizes and shapes. (b) Corresponding image as a Pois-
sonian noise-free stochastic signal, with Xs � 1.

Fig. 8. (Color online) Application of the proposed multiscale GLRT technique for improving the detection rate. (a) Result of adding Poisson
noise �Xe � 20� to Fig. 7(a). (b) Result of the single-pixel detection. (c) Result of the proposed multiscale detection technique. (d) Image that
corresponds to the selected scales for the image shown in (c). (e) Corresponding confidence values. (f) Misclassification probability in
different scales.
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Our study is the continuation of previous work [17],
generalized by considering the effects of the turbid
medium and ballistic imaging setup.

Figure 11 is a 1-D illustration of the diffraction,
which is described as “any deviation of light rays from
rectilinear paths which can not be interpreted as re-
flection or refraction” [18]. In this figure, the dashed
(red) line represents the case in which light propa-
gates in a straight line creating a sharp-edged

shadow of a hidden opaque object at the detector. The
solid (green) curve, on the other hand, illustrates a
more realistic case in which the object’s shadow ap-
pears blurry at the detector as a result of diffraction.

The blur induced by diffraction can be calculated
from the Helmholtz–Kirchhoff wave propagation
equations [19]. However, for the experimental setups
that are of most interest to us with respect to the
scope of this paper, the diffraction effect can be taken

Fig. 9. (Color online) Application of the proposed multiscale GLRT technique for improving the detection rate. (a) Result of adding Poisson
noise �Xe � 40� to Fig. 7(a). (b) Result of the single-pixel detection. (c) Result of the proposed multiscale detection technique. (d) Image that
corresponds to the selected scales for the image shown in (c). (e) Corresponding confidence values. (f) Misclassification probability in
different scales.

Fig. 10. (Color online) Application of the proposed multiscale GLRT technique for enhancing the detection rate. ROC plots for the
proposed multiscale detection scenario in the imaging scenarios of Figs. 8 and 9 (with 25 Monte Carlo experiments) are shown in (a) and
(b), respectively. The numerical labels “1, 4, . . . , 23” correspond to the scale at which detection tests are performed, and the plot labeled
“Final” represents the performance of the proposed multiscale (fused) technique.
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into account by convolving the expected signal value
with an appropriate point-spread function (PSF) that
describes the blurring effect of an object estimated
from the Fraunhofer approximation. For a circular
opaque object, such a PSF is given by

H�r� � 1 �
2k�2

z sin
kr2

2z

J1�k�r
z �

k�r
z

�
k2�4

z2 J1�k�r
z �

k�r
z

�
2

,

(15)

where k � 2��� is the wavenumber, J1� � is the order
1 Bessel function of the first kind, � is the radius of
the opaque object, r is the radius coordinate in the
detector plane, and z is the distance between the
object and the detector [20]. Note that the Fraunhofer
approximation is only valid when z �� 4�2��, and
therefore in this paper we only consider far-field im-
aging scenarios. Ignoring the effect of a turbid me-
dium and considering homogeneous illumination
with intensity I� at the object plane, the radially sym-

metric intensity of the detected signal at the radius
coordinate r is simply given by I � I�H�r�. Figure
12(a) shows the diffraction pattern of a circular
opaque object with a distance of z � 100 m from the
detector, illuminated by unit-intensity �I� � 1� light
with 800 nm wavelength.

In the imaging scenarios considered in this paper,
the detected signal is further attenuated by the tur-
bid medium, and the expected value of the signal
intensity at the radius coordinate r and distance z
from the object plane can be approximated as

I � I� exp���tz�H�r�,

where we have ignored the fact that due to diffraction
some parts of the wavefront travel slightly longer
distances. Note that in practice, due to the far-field
imaging assumption, such variance in attenuation is
small. This effect is shown in Fig. 12(b), where the
path lengths L1 and L2 are practically equal if the
distance between the opaque object and the detector
(z) is significantly larger than the PSF spread. The
detection problem associated with the signal model
defined above is described in the following two imag-
ing scenarios:

Y �0: An opaque object of unknown but small size
�� 
 0� is hidden in the scattering medium, blocking
and blurring the laser pulse (i.e., measurements con-
tain noise plus attenuated and blurred laser pulse).

Y �1: No opaque object exists �� � 0� in the prop-
agation line of the laser pulse (i.e., measurements
contain noise plus attenuated laser pulse).

The above GLRT detector is different than the NP
detectors of Section 3 since the size of the object is
now assumed to be unknown. Following Eq. (2), the
expected value of the intensity in the absence of the
object ��1� is given by

I�k, 0� � I0e
��td � Xe.

Fig. 11. (Color online) Shadow of an opaque object illuminated by
a homogeneous widespread light beam. The dashed (red) curve
represents the intensity of the measured light ignoring diffraction.
The solid (green) curve represents the diffraction-induced PSF.

Fig. 12. (Color online) (a) 1-D slice of the diffraction pattern of a circular object of radius 3 mm at 100 m distance and 800 nm wavelength.
(b) 1-D slice of the imaging scenario, where z is the distance between the opaque circular object (radius �) and the detector. d is the distance
between the laser and the detector. The pass length L1 � L2 when z is very long.
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The intensity of the signal in the presence of the
object ��0� is estimated as

I�k, �̂� � I0e
��tdH�rk� � Xe, (16)

where �̂ is the estimate of the opaque object’s radius
and rk is the radial distance of the kth pixel from the
axes passing through the center of the object. The
unknown radius of the opaque object is estimated as

�̂ � arg max
�

�
k�1

N e�I�k,���I�k, ��	yk

yk! . (17)

The above ML estimate of the radius is solved by
numerical optimization, where we discretize � over
an assumed range of values ��g	, g � 1, . . . , G, and
compute the cost function,

|�g	 � 

k�1

N

yk log�I�k, ��g	�� � I�k, ��g	�. (18)

The value of g for which |�g	 takes on the largest
value is gmax, and finally the GLRT detection statis-
tics is given by



k�1

N

yk log�I�k, ��gmax	�
I�k, 0� �� . (19)

As an illustrative example, by fixing the false
alarm rate at PFA � 0.1, the noise level at Xe � 20, and
assuming a large detector that detects all the light,
regardless of the distance or size of the object, we
used the above GLRT framework to search for the
smallest detectable object size at different distances
and detection rates in heavy fog ��t � 12.5�1 m�1�.
Figure 13 illustrates the result of this experiment,
where as expected the size of detectable objects first
rises as the distance increases.

5. Laboratory Setup and Experiments

A. Conventional Ballistic Imaging Experimentation

In our experiments, to generate ultrashort optical
pulses we used a Coherent Mira 900 Ti:sapphire tun-
able femtosecond laser pumped by an 8 W pump
(Verdi V-8). At the output this laser generates an
average power of �1 W with pulses of 200 fs duration,
13 ns repetition period, and 830 nm wavelength.

As shown in Fig. 14, each laser pulse passes
through a ��2 plate and is incident on a polarizing
beam splitter that divides the pulse into two copies,
one used for triggering the ultrafast time gate while
the other passes through the scattering medium
(which is modeled by two sets of solid diffusers lo-
cated in front and back of the target). Rotation of the
��2 plate determines the power ratio between the two
pulses, and we experimentally determined that the
best results are achieved in a near 50%�50% splitting
ratio. After passing through the diffusers and target,
the ballistic photons are incident on the gate at ex-
actly the same time as the triggering pulse and pass
through the ultrafast time gate, where due to the
phase and polarization difference the scattered pho-
tons are rejected. In practice, the triggering pulse
timing is controlled by a delay line, which increases
or decreases the optical path length, using a
computer-controlled translation stage.

The ultrafast time gate used is a nonlinear crystal,
�-barium borate (BBO) [21], which utilizes a two-
photon process such that the gating time can be as
short as the laser pulse width. Additionally, by
slightly changing the incident angles of the two
pulses on the nonlinear crystal, the time-gated result
can be spatially separated from the background sig-
nal, greatly increasing the signal-to-noise ratio. This
effect is sometimes referred to as background-free
cross correlation [22]. The energy of the ballistic pho-
tons are then measured by a silicon detector and a
lock-in amplifier. The entire setup implemented at
the ultrafast imaging laboratory at the University of

Fig. 13. (Color online) Detection rate versus the (unknown)
opaque circular target’s radius and the distance between the laser
and the detector considering the diffraction limit with PFA � 0.1
and Xe � 20 in heavy fog ��t � 12.5�1 m�1�.

Fig. 14. (Color online) Laser setup at the Ballistic Imaging Lab-
oratory at the University of California, Santa Cruz.
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California, Santa Cruz, is controlled using LabView
and a general purpose interface bus (GPIB) bus.

Figure 15 shows the results of two imaging exper-
iments where the objective is to read the text written
on transparency sheets by a ballpoint pen, sur-
rounded by a total of five solid glass (Thorlabs ground
glass, DG10-220) diffusers. The thickness of these
diffusers is 2 mm each, with the MFP of 0.73 mm (7.3
MFP total). We also note that the dynamic range of
our system is approximately 100 dB. Figures 15(a)
and 15(b) show the result of scans in the absence and
Figs. 15(c) and 15(d) show the result of scans in the
presence of the ballistic time gate, without any post-
processing. To acquire the nongated images, the gate
was removed and the detector repositioned. Note that
Figs. 15(a) and 15(c) illustrate raw data (without any
postprocessing) from the imaging system, whereas
the results shown in Figs. 15(b) and 15(d) are each
upsampled by a factor of 3 via the bicubic interpola-
tion technique. These results show that, although
ballistic images are noisier than the non-time-gated
(diffusive) ones, they are preferable since they are
virtually blur free.

B. Adaptive Sampling Experimentation

As explained in the previous sections, in ballistic im-
aging, 2-D images of the objects in the scattering
media are created by a relatively time-consuming
point-by-point scanning scheme in which the field of
view (FOV) is sampled at regularly spaced locations.
For instance, in a typical laboratory setup with a
mechanical translation stage (Fig. 14), creating a
256 � 256 image (i.e., sampling at 65,536 points)

takes about 4 h, which might be prohibitively long for
many real-world applications. Although such exces-
sive time can be reduced if the mechanical transla-
tion stage is replaced by a more expensive optical one,
faster scans are always desired, and moreover, for
many applications, the total number of pulses deliv-
ered in a given time period is limited by the average
delivered energy due to health concerns.

By making some simplifying assumptions about
the objects of interest (e.g., piecewise constancy), ir-
regular scan strategies, such as sampling sparsely in
the low-frequency areas and densely in the high-
frequency (edge or textured) areas, are shown to be
useful in reducing the imaging time. Recently, two
related techniques, namely, compressive sensing
[23,24] and active learning [25] (adaptive sampling)
were proposed to reduce the number of samples re-
quired to achieve certain reconstruction accuracy
with respect to the regular (passive) scanning tech-
nique. We note that it is the sparsity of the signal of
interest (in a given overcomplete dictionary of bases)
that enables such techniques to gather sufficient in-
formation to achieve optimal (if not perfect) recon-
struction in the presence of noise, even when the
sampling rate is lower than the Nyquist rate [26]. In
the compressive sensing technique, random projec-
tions of the signal of interest onto an overcomplete set
of basis functions are sequentially recorded. Such
random projections in practical optical imaging sce-
narios can be implemented by passing a wide-field
beam through binary masks with a random pattern
[in practice, a digital micromirror device can be used
to generate the random basis patterns [27]]. Unfor-
tunately, in the ballistic imaging setup, creating a
wide-field beam is not easy. Moreover, diffraction lim-
its the resolution of the binary mask and therefore
implementing a compressive-sensing-based ballistic
imaging system is not trivial. On the other hand, in
the following we show that adaptive sampling tech-
niques can be readily exploited for ballistic imaging
purposes.

We have implemented adaptive sampling as a two-
step process [28]. In the first step, we regularly sam-
ple the FOV space at N�2 points, where N is the total
number of samples that we plan to collect. We use
these N�2 measurements to create a pilot estimate of
the unknown FOV. In the next step, the remainder of
the N�2 points are used to sample the FOV on the
edge areas of the estimated image. It can be shown
that the decay rate of the mean square error for piece-
wise constant images is O�N�1�2� and O�N�1� for the
passive and active sampling techniques, respectively
[28].

We also note that active learning relies on accurate
adaptive image reconstruction algorithms to recon-
struct the unknown images from the irregular sam-
ples of the FOV. In our implementation, we used an
image reconstruction method based on maximum
a posteriori (MAP) with bilateral total variation prior
(regularizer) [29]. The general formulation of this

Fig. 15. (Color online) Comparison of diffusive and ballistic im-
aging. (a), (b) Two diffusive (no time gating) scans. (c), (d) Two
corresponding ballistic (time-gated) scans through five solid
ground glass diffusers.
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technique is presented as follows:

�̂X�t� � arg min
�X�t�

��A��X��̂Z��2
2 � � 


l,m��P

P

��m���l���X

�Sx
lSy

m�X�1�, (20)

where �X of size �ML � 1	 is a vector representing the
reconstructed image of size �M � L	 after lexico-
graphic ordering, and �Z of size �ML � 1	 is a vector
that stores the N � ML measurements. In this vector,
the elements that correspond to those pixels in X for
which no measurement is available are filled with
zeros. The matrices Sx

l and Sy
m are the operators

corresponding to shifting the image represented by �X
by l pixels in the horizontal direction and m pixels in
the vertical direction, respectively. The scalar weight,
0 � � � 1, is applied to give a spatially decaying effect
to the summation of the regularization terms, which
in effect represent derivatives across multiple reso-
lution scales. Matrix A of size �ML � ML	 is a diag-
onal matrix whose values are chosen in relation to
our confidence in the measurements that contributed
to make each element of �̂Z (diagonal elements corre-
sponding to pixels for which no measurement is avail-
able are replaced with zeros). The regularization

parameter, �, is a scalar for properly weighting the
first term (data fidelity cost) against the second term
(regularization cost).

To validate the applicability of this adaptive sam-
pling and reconstruction technique versus the com-
mon passive sampling technique, we performed the
following experiment. A metal washer was imaged
through a ground glass diffuser (Thorlabs ground
glass, DG10-220) via the ballistic imaging setup of
Fig. 14. Figure 16(a) shows the result of scanning the
medium on a 128 � 128 (16,384 total) regularly sam-
pled grid. Figure 16(b) shows the same image sam-
pled on a regular 32 � 32 (1024) grid and then
upsampled by the bicubic interpolation method to a
dense 256 � 256 grid. The alternative sampling
strategy was performed by exploiting the same ex-
perimental setup (distance, turbid medium, target),
where a total of 950 irregularly sampled data points
were collected in the said two-step adaptive process.
Figure 16(c) shows the result of such an adaptive
sampling scheme after upsampling to the 256 �
256 grid by the proposed adaptive MAP-based in-
terpolation method. The spatial position of the 984
adaptive samples are marked as white dots on a
256 � 256 grid in Fig. 16(d), which, as expected, is
considerably denser on the edge areas.

6. Conclusion and Future Work

In this paper, we have studied a technique for cap-
turing high-resolution images through turbid media.
This approach was based on separating the unscat-
tered (ballistic) photons from the diffused ones by
implementing an ultrafast time-gating system. The
novelty of this paper is in combining the recent ad-
vances in optical science with the novel image pro-
cessing and statistical signal processing techniques.
We studied the resolution limits of such a system that
were close to diffraction (Rayleigh) limits for longer
distances. We derived the fundamental limits on the
accuracy of the estimated extinction parameters of an
unknown turbid medium and the targets inside it.
This study also guided us toward the most efficient
experiments (with respect to both time and accuracy)
for calibrating the model parameters of the unknown
turbid medium as well as the optical properties of the
target (which can be used to identify and categorize
it). Our results showed that for a medium of practical
interest, namely, heavy fog, optical parameters can
be estimated with high accuracy. We used the said
model to derive optimal statistical tests for detecting
objects hidden in turbid media. Performance analysis
was carried out by computing ROC curves for the
proposed optimal tests, showing that, by considering
only the ballistic photons, we are able to detect
opaque objects hidden in heavy fog in the range of
approximately 380 m (i.e., 30 MFPs). The detection
rate of the semitransparent objects is shown to be
slightly less than this distance. Also, real experi-
ments attested to the fact that ballistic imaging, es-
pecially in longer distances, is difficult, and therefore
we developed a multiscale GLRT algorithm to im-
prove the detection rate in such scenarios. To reduce

Fig. 16. Comparison of passive and active imaging. (a) Result of
scanning the turbid medium on a regular 128 � 128 grid (16,384
dense passive sampling). (b) Result of scanning the turbid medium
on a regular 32 � 32 grid (1024 sparse passive sampling) followed
by interpolation via bicubic interpolation to reconstruct the image
on a 256 � 256 grid. (c) Result of scanning the turbid medium on
an irregular grid (984 sparse adaptive sampling) followed by in-
terpolation via adaptive interpolation to reconstruct the image on
a 256 � 256 grid. (d) Distribution of the 984 irregular samples.
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the data acquisition time that is essential for many
real-world applications, we implemented an adaptive
sampling scheme that significantly reduced the data
acquisition time.

As for future work, one may exploit temporal, spa-
tial, and wavelength diversity and coding for ballistic
imaging. We can study the array imaging framework
where multiple emitters will transmit coordinated
pulses of light, and for their part, a collection of
photon-detecting elements will gather the received
data and compute a resultant image. Furthermore,
there is the possibility of analyzing various ways of
coding these pulses (e.g., transmitting sequences of
pulses as is done in ultrawideband communications).

Moreover, we believe that detection techniques
that exploit all ballistic, snake, and diffused photons
[30] (what we term holistic imaging and detection)
enable detection of larger objects at significantly
longer range. More theoretical and experimental
work needs to be done to design a (near) optimal yet
practical solution to this important problem.

Appendix A: Decision-Theoretic Resolution Bounds

As explained throughout this paper, the diffraction-
limited resolution of ballistic imaging systems [e.g.,
Figs. 15(c) and (d)] makes them appealing for imag-
ing in relatively short distances. However, in rela-
tively long distances the ballistic signal is too weak
and we are bound to rely on the blurry but higher
signal-to-noise ratio (SNR) images of conventional
imaging systems [e.g., Figs. 15(a) and (b)]. In this
Appendix, we adapt a decision-theoretic approach to
the resolution bounds and search for the critical dis-
tance after which the ballistic imaging systems are of
no practical advantage compared with the conven-
tional imaging systems.

1. Ballistic Imaging—Single Point

The problem of determining whether an object lies
along the line of sight can be cast as a statistical
hypothesis test as follows. Given a received photon
count X at the sensor, one must choose between two
possible situations. The first situation is that no oc-
cluding object exists in the path between the laser
and the sensor ��0�. The alternative is that there is an
occluding object along the line of sight between the
laser and the detector ��1�. Semitransparent objects
can be considered to be significantly more scattering
than the medium [31], and therefore the detector will
collect an attenuated number of ballistic photons
(compared with �0) along with the noise photons.

Following the notation of Subsection 3.B, we define
the number of noise photons that will arrive at the
detector as ��NXe�, where X � ���� is a Poisson-
distributed random variable with mean �. Then, the
hypothesis test is given by the null hypothesis de-
fined as �0 : X � ��NXe � NXs� and the alternate
hypothesis (object exists) defined as �1 : X � ��NXe

� NXsinc
�. As the mean of the Poisson distribution

grows, the probability distribution tends to a Gauss-
ian, e.g., averaging many repeated Poissonian trials
(i.e., N large) results in a Gaussian-distributed sta-

tistic. Using the Anscombe transformation [31], we
obtain the following relationship:

X � ���� ) 2�X �
3
8 � ��2��, 1�,

where ���, �2� represents Gaussian distribution with
mean � and variance �2. Defining a new variable
representing the Anscombe-transformed statistic X�
� 2�X � 3�8 the hypothesis test becomes

�0 : X� � ��2�NXe � NXs, 1�,

�1 : X� � ��2�NXe � NXsinc
, 1�. (A1)

The decision test is now defined as �X� � �0

�1 ��,
where a user-specified false alarm rate �PFA� deter-
mines the value of the threshold ��� such that P�X�
� ���0� � PFA.

2. Ballistic Imaging—K Points

The problem now is modified to describe an imaging
scenario of scanning the FOV at a fixed square array
of ��K � �K� points. This results in a multiple hypoth-
esis testing problem (K tests), where for large K it
puts a lower bound on the SNR of the observation. To
boost the SNR, one could use spatial aggregation by
averaging over a number of observation points. This
modifies the problem to averaging neighborhoods of
points in an area measuring �W � �W, W � K, effec-
tively reducing the spatial resolution of the detection
map (image). By decreasing the spatial resolution,
this also decreases the variance at each point, modi-
fying the decision test to

�0 : X� � ��2�NXe � NXs,
1
W�,

�1 : X� � ��2�NXe � NXsinc
,

1
W�. (A2)

This test is under the assumption that the averag-
ing window will contain either no occluder points or
all occluder points. In reality, the averaging filter will
result in an observed point, X� � ���E�X�|�0	 �
�1 � ��E�X�|�1	, 1�W�, where � is the fraction of the
window containing nonoccluders, and E is the ex-
pected value operator. Our goal is to find the lower
bound on the value of W that will guarantee an over-
all false alarm rate of less than PFA, and we only
consider the ideal case (all occluders or nonoccluders)
in our calculations in order to obtain closed-form so-
lutions.

The Bonferroni correction approach is a con-
servative method of controlling the false alarm rate
for a detection problem under multiple independent
and identically distributed tests [33]. The correc-
tion adjusts the threshold for each individual test in
order to satisfy a lower (per test) false alarm rate
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value �PFA�K� such that each of the fixed number K
points in the array (and W-point averaging filter)
satisfies �P�X � �|�0� � PFA�K	. With ��x� as the
cumulative distribution function of the ��0, 1�
density at the point x, this results in �� �
�1��W���1�PFA�K� � 2�NXe � NXs	. To give a satis-
factory observation, we also bound the miss probabil-
ity for detecting a ballistic photon by the same
modified value �PFA�K� such that �P�X 
 �|�1�
� PFA�K	. Using the miss bounds, we determine the
lower bound on the necessary averaging window size
(W) to image a fixed K-point array as

W � 12 ��1�1 �
PFA

K �� ��1�PFA

K �
�NXe � NXs � �NXe � NXsinc

�
2

. (A3)

The minimum width of the occluding object �wb�
that can be reliably resolved for a given parameter-
ized turbid medium can now be derived. Using the
lower bound for W found in Eq. (A3), we can solve
for the lower bound on the width using wb �
��FOV � W��K.

3. Conventional Imaging Analysis

In the conventional imaging regime, there is no time-
gating mechanism and all the photons that reach the
detector over a long acquisition time will be observed
[acquisition time �� (d�c) 	 direct line-of-sight flight
time]. Therefore, a large number of photons sent
through the medium will be collected by the detector.
A problem occurs here, too—although the SNR is high
due to the large number of photons, the average num-
ber of scattering events on each photon collected will

Fig. 17. Simulation experiments with FOV � 50 m � 50 m, dinc � 0.3 m, and �t � 12.5�1 m�1. (a)–(c) Ballistic, Bonferroni, and
conventional observations at d � 350 m, respectively. (d)–(f) Ballistic, Bonferroni, and conventional observations at d � 400 m, respec-
tively. (g)–(i) Ballistic, Bonferroni, and conventional observations at the critical distane d � dcritical � 417 m, respectively.
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also be high. As the number of scattering events in-
creases for a photon, the spatial resolution of the
occluding object will degrade. The lack of spatial in-
formation results in a blurred observation. Using
random-walk theory [34,35], it is possible to solve for
the minimum width of an occluding object that is re-
liably resolved using a conventional imaging system.
The width [36] is found using the photon mean time of
flight ��t�, which can be numerically computed as a
function of the parameters of the medium ��s, �a�.
The modified minimum full width at half-maximum
(FWHM) is equal to wconv � 0.94���t�c��s�1�2.

4. Optimal Resolution Trade-Offs

Ideally, one should choose the imaging system (bal-
listic or conventional) that reliably resolves the
smallest possible object �w � min�wconv, wb�	. The de-
cision test using the minimum resolvable sizes de-
rived above becomes

wconv �
ballistic

conventional
wb ) 0.94���t�c

�s
�1�2

�
ballistic

conventional�FOV � W
K .

(A4)

Using the lower bound of W from Eq. (A3), one can
solve for the critical distance �d � dcritical�, the maxi-
mum distance at which ballistic still offers superior
resolution relative to conventional imaging.

As an illustrative example, we considered a ballis-
tic scanning experiment at �K � 2562� points, imaging
a 50 m � 50 m FOV. The occluding objects were as-
sumed to be circular of diameter 1.0, 2.0, 4.0, 10.0,
and 20.0 m each of thickness dinc � 0.3 m and �inc

� 12.5 m�1. We used false alarm rate PFA � 0.05 and
considered a heavy fog turbid medium with �t �
12.5�1 m�1. Using the analysis from above, dcritical �
417 m, which is consistent with earlier results we
showed in Section 3. Figure 17 shows the effect of
distance on the ballistic resolution, illustrating the
captured ballistic and diffused (conventional) images
at distances of d � 350, 400, 417 m.
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RESOLUTION BOUNDS AND RECONSTRUCTION TECHNIQUES
FOR TIME-RESOLVED TRANSILLUMINATION IMAGING

BRIAN ERIKSSON AND ROBERT NOWAK∗

Abstract.
Recent technological advances now enable time-gated acquisition of photons at very fast rates.

This allows one to separate scattered and unscattered photons by temporal gating, a process termed
time-resolved transillumination (TRT) imaging. TRT imaging opens the door to a new type of
scanning through turbid (scattering) media such as soft tissue and fog/smoke, and many poten-
tial applications in bioimaging and surveillance. This paper investigates the performance tradeoffs
between TRT imaging and conventional (un-gated) imaging. On the one hand, time-gated, first-
arrival photons are unscattered and therefore provide very high spatial resolution. But, very few
photons arrive at the detector without scattering, effectively resulting in a very low SNR. On the
other hand, conventional (un-gated) imaging is based on all photons (scattered and unscattered),
resulting in lower spatial resolution, but higher SNR (due to the large number of photons). This
paper investigates these tradeoffs using a decision-theoretic approach to ascertain bounds on the
minimum resolvable occluding object size with and without time-gated photon acquisition. The
theoretical predictions are validated through a realistic simulation of tumors in breast tissue. The
paper then proposes a novel Maximum Likelihood approach to TRT image reconstruction. Using
a novel Expectation-Maximization algorithm, multiple snapshot observations of time-gated photons
are used to reconstruct the image. This allows us to obtain the ”best-of-both-worlds” by combining
the spatial resolution of the first-arrival photons, with the higher SNR provided by scattered photons.

Key words. Transillumination imaging, Time-gated imaging, Photon-limited imaging, Image
reconstruction, High-resolution imaging

AMS subject classifications. 62C05, 94A08

1. Introduction. Recent technological advances now enable time-gated acqui-
sitions of photons at very fast rates, fast enough to separately collect unscattered
(first-arrival) and scattered (later-arrival) photons in transillumination imaging [1].
We refer to this technology as time-resolved transillumination (TRT) imaging. TRT
imaging opens the door to a new type of imaging through turbid (scattering) media
(e.g., soft tissue, fog/smoke). The ability to separately detect unscattered, so-called
ballistic, photons can enable much higher spatial resolution imaging than possible
using conventional (un-gated) imaging devices, and this has many potential applica-
tions in bioimaging and surveillance. However, a tradeoff exists, since the number of
ballistic photons decays exponentially as the thickness/depth of the turbid medium
increases. Therefore, the high resolution information that is available is often in a
very photon-limited, low SNR regime. This paper explores a novel approach to TRT
image reconstruction and a decision-theoretic approach towards deriving bounds on
achievable spatial resolution.

In more detail, the TRT imaging problem involves photons traveling through a
turbid medium from a source (usually a laser), through a scattering medium, and
then onto a detector plane as depicted in Fig. 1.1. Photons traveling through a
scattering medium can be roughly classified into three types: ballistic, snake, and
diffuse. Ballistic photons experience no scattering and thus travel in a direct line
of sight, arriving first at the detector. Because of the lack of scattering, ballistic
photons retain their spatial information and arrive at the detector plane at the same
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1



2

planar location as sent from the light source. In the intermediary regime, ”snake
photons” experience slight scattering through the medium, this scattering will cause
these photons to arrive later than the ballistic photons and likely in a slightly different
planar location than the light source (resulting in a small loss of spatial resolution).
The third class, diffuse photons, experience large amounts of scattering and arrive
at the image plane having lost most of their point of origin information. Due to the
large number of scattering events through the medium, the diffuse photons will travel
the farthest distance to the detector plane, and therefore will arrive after the snake
and ballistic photons. While the inherent spatial information decreases in order of
ballistic, snake and diffuse photons, the number of photons (and hence inherent SNR)
increases in the same order. So we are faced with high resolution, low SNR data
at one extreme (ballistic), and low resolution, high SNR data at the other (diffuse).
Furthermore, the diffusion and SNR parameters, which characterize the underlying
point spread function (PSF), are not known precisely in practice.

Fig. 1.1. Example of Photons Through a Scattering Medium

1.1. Related Works. The majority of the previous work in the area of transillu-
mination imaging has been focused on finding the resolution limits on an observation
using the diffuse photons [1],[2],[3],[4],[5],[6]. Relatively little work has been performed
on characterizing the resolution limits of the ballistic observation (most notably [7]
and [1], neither of which take detection error rates into careful consideration). To
the best of our knowledge, this is the first attempt to quantify the tradeoff between
ballistic and diffuse photons in terms of achievable spatial resolution. Previous work
has been performed on iterative least-squares methods to reconstruct images based
on time-resolved turbid medium observations ([8], [9]). This paper is the first attempt
at using a maximum likelihood approach to estimate turbid medium parameters, and
also the first attempt at developing an EM algorithm for transillumination image
reconstruction.

1.2. Organization. This paper is divided into three parts. Section 2 uses a
decision-theoretic approach to derive resolution bounds for turbid environments. In
Section 3 we introduce an estimation-theoretic approach to TRT image reconstruction.
A statistical model for TRT imaging is purposed, and then an EM algorithm using
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a penalized maximum likelihood approach is described. Finally, in Section 4 we
will simulate transillumination imaging through breast tissue and examine the EM
algorithm image reconstruction results.

2. Resolution Bounds for Conventional and Time-Resolved Imaging.
The resolution of an transillumination imaging system can be quantified in terms of
the smallest occluding object that can be reliably detected and located. To address
this issue, we consider the following imaging process. Assume that the source and
detector pair scan the area of the detector plane (A) at points on an n × n grid, to
create a pixelated cross-section of the detector plane area A. We assume that the
region between the source and detector is a homogenous scattering medium, possibly
containing occluding objects embedded in the region. Our goal is to determine the
smallest occluding object that can be reliably detected. The size of an occluder
is measured by its cross-sectional diameter (wo in Figure 2) and its thickness (do in
Figure 2). We adopt a cylindrical object model so that the scattering properties along
the line-of-sight between the source and detector are spatially uniform (a spherical
object model could also be considered, but because its thickness would vary depending
on where the line-of-sight intersects the sphere, its analysis would be slightly more
complicated).

For this section, only the two extremes of the imaging regime will be considered,
the ballistic regime where only early arriving, unscattered photons are detected using
high-speed gating mechanisms, and the conventional imaging regime where all the
photons arriving at the detector are utilized (i.e. no time-gating). We characterize
the minimum size occluder that can be reliable resolved in these two regimes, and
show that there is a distinct threshold on the total image acquisition time, below
which conventional imaging offers better spatial resolution an above which ballistic
imaging is superior. This threshold is a function of the parameters of the scattering
medium and occluding material.

Fig. 2.1. Turbid Medium Model Example

A turbid medium may be considered as any scattering material, but for example
purposes throughout the paper we will assume it to be a homogeneously scattering
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section of human tissue. The scattering material is parameterized by the number
of photon scatters per unit length (the scattering coefficient) µm

s , the fraction of
absorptions per length (the absorbtion coefficient) µm

a , and the length of the medium,
dm. Between the source and detector in the medium there may exist occluding objects,
which could represent tumors in the bioimaging context. For the purposes of our
resolution bound analysis, we assume that the occluders are located in the plane
midway between the source detector, since this is the plane in the medium where
the variance of the scattering will be at a maximum [2],[3]. To completely define the
environment, one must take into consideration the scattering properties of occluders
(scattering and absorption coefficients denoted by µo

s, µo
a, respectively). In general, the

numbers, locations and geometrical properties of occluding objects may be arbitrary,
but for the purposes of determining the minimum resolvable occluder size, we assume
a cylindrical occluder of thickness do and width wo.

We first consider the spatial resolution of conventional (un-gated) imaging, which
can be determined via classical random-walk diffusion techniques and depends only
on the properties of the scattering medium, and not on the particular properties of the
occluders. Then we consider the spatial resolution achievable from ballistic photon
imaging. Since the numbers of detected ballistic photons depend on the properties
of both the scattering medium and the occluders, this analysis is somewhat more
complex than that of conventional imaging. We cast the ballistic imaging problem
as a multiple testing problem, where our goal is to reliable decide whether or not an
occluder lies along the line-of-sight between the source and detector at each of the
n× n scan locations.

2.1. Conventional Imaging Resolution. In the conventional imaging, there
is no time-gating mechanism and all the photons that reach the detector, over a
relatively long integration time, are recorded. This results in a high SNR, but since
most of the photons are scattered, the spatial resolution is limited. In effect, the
resulting image is blurred, but not very noisy. Methods for determining the blurring
caused by scattering vary in complexity. Simple linear techniques found in [4],[10]
have been shown to fit experimental data well for short integration times. Due to the
absorption of photons traveling long distances, these linear techniques do not hold as
the integration time tends to infinity. More complicated methods using Monte Carlo
techniques ([6]), or diffusion theory calculations ([1],[5]) are found to be more accurate
when considering long integration times. Another method accurate with respect to
long integration times uses random walk theory in [2],[3], and due to the accuracy and
simplicity of the method we will consider this approach. The blurring effect caused
by scattering can be modeled as a convolution with a Gaussian kernel. The standard
deviation of the Gaussian kernel is found using the photon mean-time-of-flight 〈∆t〉,
which can be numerically solved ([2], Eqn. 16) using the parameters of the medium
(µm

s , µm
a ). The full-width half-maximum of the Gaussian kernel is

wo
conv = 0.94

( 〈∆t〉 c
µm

s

) 1
2

(2.1)

which provides a reasonable measure of the spatial resolution of a conventional imaging
system operating in transillumination mode through the given medium.

2.2. Ballistic Imaging Resolution. To begin, let us first consider the statistics
of detected ballistic photons along a single line-of-sight. The problem of determining
whether or not an occluder lies along the line-of-sight can be cast as a statistical
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hypothesis test, as follows. Given the ballistic photon count X at the detector, one
must choose between two hypotheses. The first is that no occluding object exists in
the path between the source and detector, which we denote by H0. The alternative
is that there is an occluder along the line-of-sight, denoted by H1. Occluders are
considered to be significantly more scattering than the surrounding medium (e.g.,
tumors in human tissue [11]), and therefore the detector will collect an attenuated
number of ballistic photons under H1 compared to H0).

The probability of a photon passing through the scattering medium with no scat-
tering events (i.e. the probability of a photon of being a ballistic photon) is exponen-
tially distributed with rate parameter (µm

s + µm
a ) dm. Given the source intensity λ,

equal to the number of photons sent through the medium by the per unit time, and
assuming that no occluder lies along the path between source and detector, one can
determine the intensity of the ballistic photon arrival process at the detector:

λ0 = λ exp (− (µm
s + µm

a ) dm) (2.2)

When an occluder does lie along the path, the intensity of the ballistic photon arrival
process is attenuated:

λ1 = λ exp (− (µm
s + µm

a ) (dm − do)− (µo
s + µo

a) do) (2.3)

In addition to ballistic photons due to the source, stray “noise” photons due to back-
ground light sources, arriving during the time-gate interval of acquisition, will also be
detected. Let λb denote the average intensity of this arrival process.

We can now express the probability distributions of the photon count at the
detector, under the two hypotheses.

H0 : X ∼ P ((λb + λ0) t) (2.4)

H1 : X ∼ P ((λb + λ1) t) , (2.5)

where t is the length of the time-gate interval in seconds and P(Λ) denotes the Poisson
distribution whose probability mass function is given by p(X = m) = e−ΛΛm/m!. As
the mean, Λ, of the Poisson distribution grows, the probability distribution tends to a
Gaussian. Averaging repeated trials (i.e., averaging of multiple laser pulses) therefore
results in a Gaussian distributed statistic. Using the Anscombe Transformation [12],
we can obtain approximately Gaussian distributed statistics. If X ∼ P(Λ), then the

Anscombe transformed variable 2
√

X + 3
8 is asymptotically (as Λ → ∞) Gaussian

distributed as N
(
2
√

λ, 1
)

(where N (
µ, σ2

)
is a Gaussian distribution with mean µ

and variance σ2). In fact, the approximation to Gaussian is quite accurate even when
Λ is relatively small (e.g., Λ = 20). Thus, we transform the photon count X to obtain

a new statistic X ′ = 2
√

X + 3
8 . Letting T = kt denote the total acquisition time,

over k trials with t units of time per trial, the resulting Gaussian hypotheses are given
by:

H0 : X ′ ∼ N
(
2
√

(λb + λ0)T , 1
)

(2.6)

H1 : X ′ ∼ N
(
2
√

(λb + λ1)T , 1
)

(2.7)
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The decision test is now defined as
(
X ′ ≶H1

H0
γ′

)
. The probability of error of this test

can be expressed in terms of the Gaussian error function Φ(t) :=
∫∞

t
1√
2
e−t2/2, as

p = 2Φ
(√

(λb + λ0)T −
√

(λb + λ1)T
)

= 2Φ
(√

T∆λ

)

where ∆λ =
√

λb + λ0 −
√

λb + λ1.
Now recall that our goal is to create a pixelated image at n×n points over the FOV.
In other words, the testing procedure above will be repeated at n2 different locations.
Whenever a statistical test is repeated multiple times, the chance that one or more is
in error increases with the number of trials. Our goal is to guarantee a low probability
of error at all n2 locations (i.e., to control the probability that an erroneous decision
is made at one or more of the pixel locations). This probability is bounded by the
sum of the probability of error at each location. That is, the overall probability that
one or more pixels is in error is bounded by n2p. This bound is called the Bonferroni
or union bound. Thus, if we desire an overall probability of error pe, then we require
that

n ≤
√

pe/p =


 pe

2Φ
(√

T∆λ

)



1/2

The minimum width of an occluder that can be reliably resolved for a given turbid
medium can now be derived. Using the upper bound for n above, we can solve for the

lower bound on the width using wo
ballistic =

√
A
n2 (where A is the area of the detector

plane):

wo
ballistic =

√
A/n2 (2.8)

≥

2AΦ

(√
T∆λ

)

pe




1/2

(2.9)

This equation shows how the minimum resolvable occluder size depends on the pa-
rameters of the imaging system.

This resolution can be contrasted with that of the conventional imaging system
given by (2.1). The critical acquisition time, Tcritical (per pixel), at which the resolution
of the ballistic system wo

ballistic is equal to that of the conventional system wo
conv, is

given by

Tcritical =
[
∆λ Φ−1

(
(0.94)2

pe 〈∆t〉 c
2Aµm

s

)]2

(2.10)

At acquisition rates below Tcritical, conventional imaging provides better resolution
than ballistic imaging, and the converse is true at faster rates above Tcritical. Deter-
mination of Tcritical requires specification of the parameters of the turbid medium and
occluding material, and the allowable error level in the ballistic case (e.g., pe = 0.05).
We will examine the critical acquisition time in examples in the following sections.

3. TRT Image Reconstruction. The analysis above demonstrates that bal-
listic imaging can provide statistically reliable, higher resolution images than conven-
tional imaging in certain situations. In this section, we develop a novel approach to
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TRT image reconstruction that takes advantage of both the high resolution of bal-
listic photons, and the higher SNR associated with conventional imaging, leveraging
the best of both regimes.

The TRT image reconstruction problem can be posed as a statistical inverse
problem (a particular form of photon-limited image reconstruction), but to the best of
our knowledge our work here is the first to formulate it as such. Due to uncertainties in
the blurring kernel (dependent on usually unknown parameters of the turbid medium),
the TRT problem is somewhat related to blind image deconvolution (BID). While
BID is a well-studied problem, there are several unique aspects in the TRT imaging
problem that make it quite different from standard BID problems. In particular,
the distinctive features of TRT imaging include the photon-limited nature of the
data, the time-gated data acquisition which in effect yields information at multiple
spatial resolutions that can be fairly well characterized via a diffusion equation, and
most importantly the availability of “unblurred” data corresponding to the ballistic
photons. For these reasons “off-the-shelf” BID algorithms are not directly applicable
to TRT image reconstruction.

3.1. A Statistical Model of TRT Imaging. The basic statistical model we
propose for TRT imaging through homogeneous turbid media is as follows. Assume
that we have k time-resolved “snapshots”, each acquired over disjoint time intervals
T (1), . . . , T (k), with T (1) denoting the ballistic time interval. Assume that these inter-
vals form a uniform partition of the overall observation interval, denoted T > 0. Let
X(1), . . . , X(k) denote the photon data acquired in each interval, respectively. Specif-
ically, the data X(i) are acquired in the form of an n × n pixel image, and for our
mathematical exposition we assume that the columns of this image are “stacked” to
form an n2 × 1 vector. Each entry in X(i) is simply the number of photons detected
at the corresponding pixel location during the time interval T (i) =

[
i−1
K T , i

K T
)
. We

assume that each image is Poisson distributed according to the following model:

X(i) ∼ Poisson(α(i)P (i)λ), i = 1, . . . , k, (3.1)

where λ denotes the underlying n2×1 image intensity function we wish to reconstruct,
P (i) denotes the n2 × n2 photon transition matrix (from the emission (source) plane
to the detector plane) reflecting the diffusion process governing photon migration
during each time interval, and α(i) > 0 is a scalar gain factor reflecting the varying
abundances of detected photons in the differing regimes, from ballistic to diffuse.

The transition matrices are functions of time and a scalar diffusion bandwidth
parameter denoted by σ2. Using the elementary linear models of the photon migration
and diffusion process found in [4, 10], we model P (i) as a linear shift-invariant Gaussian
blurring kernel with variance proportional to σ2t(i), where t(i) denotes the midpoint
of the i-th acquisition time-interval. Thus, the transition matrices are parametric
functions of the form P (i) = P (σ2t(i)), where only the variance coefficient σ2 needs
to be estimated. Also, due to the linear shift-invariant nature of the model, the
resulting blurring process is a convolution, and thus the forward solution can be
rapidly computed via the Fast Fourier Transform (FFT) algorithm (a property we
will exploit in our reconstruction algorithms).

We assume that λ is normalized such that the intensities in λ sum to one (i.e.,∑n2

j=1 λ(j) = 1). Also the transition matrices are normalized so that µ(i) = P (i)λ also

satisfies
∑n2

j=1 µ(i) (j) = 1. With these normalizations, it is easy to verify that the
total intensity (expected total number of detected photons) of the snapshot X(i) is the
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gain αi, i = 1, . . . , k. Furthermore, we adopt the convention that the ballistic image
resolution is the finest spatial resolution available and assume that P (1) is the n2×n2

identity matrix. We also assume that the images acquired in each time-interval are
statistically independent, and so the joint distribution function of the entire kn2 × 1
data record, obtained by stacking the snapshots into a single column vector

X =




X(1)

...
X(k)


 ,

is

X ∼ Poisson(Pλ), (3.2)

where P is the kn2 × n2 transition matrix obtained by stacking the matrices
α(1)P (1), . . . , α(k)P (k); i.e.,

P =




α(1)P (1)

...
α(k)P (k)


 .

Let us contrast the above model of the TRT imaging system with a conventional
imaging system in which the photon detections are not time-resolved. In this case, we
acquire the aggregated photon image Xa = X(1) + · · ·+ X(k), which obeys the model

Xa ∼ Poisson(Paλ), (3.3)

where Pa =
∑k

i=1 α(i)P (i). We will see that the extra information available in the
time-resolved photon acquisition can significantly improve our ability to estimate the
underlying intensity λ.

3.2. Maximum Likelihood Reconstructions. Both the TRT imaging model,
X ∼ Poisson(Pλ), and the conventional imaging model, Xa ∼ Poisson(Paλ), are in
the form of the basic statistical model usually considered in photon-limited imaging
problems [13]. If the parameters of the imaging system (i.e., the gains αi and the
diffusion parameter σ2) are known, then standard techniques can be applied to find
the Maximum Likelihood Estimate (MLE) of λ.

To define the MLE, let p(X|λ) denote the likelihood function of the data (i.e.,
the Poisson probability mass function evaluated at X and viewed as a function of λ).
The MLE is the solution to the following optimization:

λ̂MLE = arg max
λ

p(X|λ) (3.4)

More specifically, taking the logarithm of the likelihood function (a monotonic trans-
formation), we have

λ̂MLE = arg max
λ

k∑

i=1

(
α(i)P (i)λ + X(i) log α(i)P (i)λ− log X(i)!

)
(3.5)

There is no closed-form solution for the λ̂MLE , but the log-likelihood function is con-
vex in λ. Thus, numerical optimization techniques can be readily applied. One very
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popular and effective optimization procedure is the so-called Expectation-Maximization
(EM) algorithm [13]. The EM algorithm is an iterative procedure that is guaranteed
to produce a sequence of iterates, λ(1), λ(2), . . . , that have non-decreasing likelihood
values (i.e., each iteration of the algorithm does not decrease the likelihood value).
The EM algorithm can work very well in practice, but usually requires an ad hoc
stopping criterion, since the MLE solution can very noisy in severely photon-limited
and/or ill-posed cases. Stopping the algorithm prior to convergence provides an indi-
rect smoothing of the solution.

A more desirable alternative to the early stopping of the EM algorithm is to
tackle the undesirable aspects of the MLE solution more directly. This is usually
accomplished by augmenting the likelihood criterion with an additive penalty func-
tion which discourages solutions that are rough and irregular. The generic form of
penalized solutions is

λ̂ = arg max
λ

[log(p(X|λ) + pen(λ)] (3.6)

where pen(λ) > 0 is a penalty function that assigns small values to smooth λ and
larger values to non-smooth λ. The notion of smoothness depends on the nature of
the penalty, and many possibilities have been studied in the literature (see [14] and
the references therein). In particular, we advocate the use of multiscale complexity
penalty [15, 14], which tends to favor solutions that are piecewise smooth. The mul-
tiscale complexity penalty leads to a denoising process akin to wavelet thresholding
methods, but particularly adapted to Poisson data [16, 15, 17, 14]. Figure 3.1 illus-
trates the denoising capability of the multiscale complexity penalty. In this example,
a single photon-limited snapshot was acquired, without blur (i.e., the corresponding
photon transition matrix is the identity operator). The denoising process is carried
out via a computationally efficient multiscale tree-pruning process (akin to wavelet
coefficient thresholding) that requires O(n2) operations for an n× n image.

(a) (b) (c)

Fig. 3.1. Night sky image (a) Original Image, (b) Poisson photon count image, (c) MPLE
Denoised Image, resulting from the MPLE proposed in

The multiscale complexity penalty can also be easily integrated into an EM al-
gorithm, by replacing the conventional (MLE) M-step with a denoising step (see [17]
for further details). Iterating this modified EM algorithm to convergence produces
a Maximum Penalized Likelihood Estimate (MPLE). To the best of our knowledge,
the quality of the MPLE solution, in terms of squared error, is state-of-the-art [17],
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and so we will exclusively use this reconstruction process here. Each iteration of the
EM algorithm follows a two-step procedure. In the E-step, the conditional expecta-
tion of the so-called “complete data” is computed. The complete data is an n2 × n2

array in which the i, j element is equal to the number of photons emitted from posi-
tion i and detected at position j. Of course, we only observe the detected photons,
without knowledge of where they originated from, and so the complete data must
be estimated based on the photon detections X and the current iterate of λ. The
E-step requires computing matrix vector products with the transition matrices P (i)

(see pseudocode below). Since the transition matrix operation is a linear convolu-
tion, these products can be rapidly computed via the Fast Fourier Transform (FFT)
algorithm. From the complete data, we can compute the photon emission counts by
marginalization (providing data as if no diffusion/blurring process occurred). The
exact (not estimated) photon emission counts gives the MLE for λ. Thus, the stan-
dard M-step (corresponding to the MLE) simply computing the estimated photon
emission counts by marginalizing the expectation of the complete data. The modified
M-step (corresponding to the MPLE) is obtained by applying the multiscale complex-
ity penalty denoising process [15, 14] to the estimated photon emission counts. The
pseudocode below outlines the steps of the EM algorithm. The algorithm produces a
sequence of iterates, and the corresponding sequence of penalized log-likelihood values
is monotonic, non-decreasing (see [17] for further details).

Algorithm 1 - MPLE EM Algorithm with Known Parameters

Initialize: Set iteration counter j = 0 and λ(0)(m) = 1/n2, m=1,. . . ,n2.

E-Step: Compute the conditional expectation of the complete data (c.f. [13]):

Z(j) (`,m) =
k∑

i=1

X(i) (`)
λ(j) (m)α(i)P (i) (`,m)∑n2

m=1 λ(j) (m)α(i)P (i) (`, m)

M-Step:
1. Compute the expected photon emission counts via marginalization:

µ(j) (m) =
n2∑

`=1

Z(j) (`,m) , i = 1, . . . , k

2. Apply the multiscale complexity penalized denoising procedure to µ(j)

to obtain updated iterate λ(j+1). The Poisson denoising procedure was
first proposed in [15], and the implementation employed in this work is
a translation invariant version developed by R. Willett. Code is on-line at [18].

Repeat: Set j = j + 1. Repeat E- and M-steps until convergence.

3.3. Adapting to Unknown Turbid Media. One of the major challenges
in practical imaging problems is that the characteristics of the turbid medium are
usually not known precisely. In particular, the values of the parameters {α(i)} and σ2

are unknown and therefore must be estimated along with λ. We can formulate this



11

as a joint MLE problem, seeking to find values of the parameters and λ which jointly
maximize the Poisson likelihood function (or penalized likelihood). At first glance, it
may appear that this joint MLE problem may be intractable, but it turns out to have
a rather simple solution.

The basic solution approach is as follows. First, the MLEs of the gain factors
{α(i)}k

i=1 can be computed separately from λ and σ2 due to the following observation.
Consider the statistics

S(i) =
n2∑

`=1

X(i) (`) , i = 1, . . . , k.

These statistics are simply the total photon counts for each image. Due to the nor-
malization of λ and the matrices {P (i)} in our model, it follows that

S(i) ∼ Poisson(α(i)), i = 1, . . . , k.

It is well-known that the conditional distribution of X(i) given S(i) is multinomial with
parameter µ(i) = P (i)λ (see [15]). Therefore, the likelihood factorizes into Poisson
factors, each involving one pair (α(i), S(i)), and multinomial factors, each involving λ
and one triple (P (i), X(i), S(i)). Consequently, the MLEs of the gain factors {α(i)} can
be obtained separately from λ and σ2 and are given by the simple formula α̂(i) = S(i),
i = 1, . . . , k. Now recall that the matrices {P (i)} are parametric in σ2. To find the
MLEs of λ and σ2 we consider a range of candidate values for σ2 and for each one we
use the EM algorithm described above (with each α(i) set to its MLE α̂(i)) to compute
the MPLE, denoted by λ̂(σ2), and the corresponding maximum penalized likelihood
value, denoted L(σ2). This can be done exhaustively over a discretized range of σ2

values, by performing the EM algorithm for each discretized value of σ2. The value of
σ2 that results in the highest penalized likelihood value L(σ2) is considered the MLE
of σ2, denoted by σ̂2. The MPLE of λ is then λ̂(σ̂2). Another, less computationally
expensive option, is to incrementally adjust the value of σ2 at each iteration of the
EM algorithm (see pseudocode below for details). This iterative method of estimation
is performed in the experimental portion of this paper and was repeatedly found to
converge to the true value of σ2.

4. Experimental Results. We now present a simulation study of imaging ma-
lignant breast tissue through healthy breast tissue. For this simulation, a medium with
a 100mm x 100mm detector plane area (A) and length dm = 10mm is defined with
circular occluding objects of diameter 2mm, 4mm, 8mm, 20mm, and 40mm. From
[11], we use the scattering and absorption coefficients of the two tissue types (healthy
breast tissue, malignant tissue). Using a specified thickness of the occluding tumor
(do=2.5mm) and false alarm rate (pe = 0.05), we use Equation 2.10 and find Tcritical to
equal 154ms. We simulate a series of ten snapshot observations through the medium
using four different (per snapshot) acquisition time values (T =1,10,100,154ms).

The first of the ten snapshot images is the ballistic observation (as seen in Fig-
ure 4.1(A) for T=1ms, and Figure 4.2(A) for T = Tcritical=154ms, generated using the
formulas in Equations 2.4,2.5), and the last is a heavily blurred diffuse observation
(Figure 4.1(B) and Figure 4.2(B) generated using Equation 2.1). A single-snapshot
version of the MPLE EM algorithm (i.e., with k = 1) is used to reconstruct the
ballistic and diffuse observation images (Figure 4.1(C), 4.1(D) for T=1ms, and Fig-
ure 4.2(C), 4.2(D) for T = Tcritical=154ms).
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Algorithm 2 - MPLE EM Algorithm with Unknown Parameters

Initialize:
1. Set iteration counter j = 0,

2. λ(0)(m) = 1/n2, m=1,. . . ,n2,

3. X(i) (`), i = 1, . . . , k.

4. Set (σ(0))2 = 0.164
(

ct(1)

µm
s

)
, an elementary estimate of the sigma parameter

based on system characteristics (from [10])

5. Set ∆σ = 1
2 (σ(0))2,

E-Step: Set P (i) = P ((σ(j))2t(i)). Compute the conditional expectation of the com-
plete data (c.f. [13]):

Z(j) (`,m) =
k∑

i=1

X(i) (`)
λ(j) (m)α(i)P (i) (`,m)∑n2

m=1 λ(j) (m)α(i)P (i) (`, m)

M-Step:
1. Compute the expected photon emission counts via marginalization:

µ(j) (m) =
n2∑

`=1

Z(j) (`,m) , i = 1, . . . , k

2. Apply the multiscale complexity penalized denoising procedure [18] to µ(j)

to obtain updated iterate λ(j+1).

3. Set (σ(j+1))2 = argmax
σ2={(σ(j))2−∆σ,(σ(j))2,(σ(j))2+∆σ}

L
(
σ2

)
.

4. Set ∆σ = ∆σ

2 .

Repeat: Set j = j + 1. Repeat E- and M-steps until convergence and record

The multiple snapshot EM algorithm (from Section 3 is used to fuse the data from
all ten snapshots. Figure 4.1(E) and Figure 4.2(E) show the image reconstruction
based on the multiple snapshot data given exact knowledge of all attenuation factors
and blurring variances. Using the adaptive MLE scheme described in Section 3-
3.3, the attenuation factors and blurring variance were jointly estimated along with
original image λ, with the resulting image reconstruction shown in Figure 4.1(F) and
Figure 4.2(F). Table 4.1 summarizes the reconstruction errors as compared with the
original image λ. As expected, the combined oracle reconstruction performs best (in
terms of pSNR), with the combined reconstruction with ML estimation of the gain
and diffusion parameters close behind.

The strength of the EM algorithm can be observed, as the EM reconstructed image
will tend to the ballistic reconstruction at T ≥ Tcritical, while the EM reconstructed
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(A) Ballistic Obs. (B) Diffuse Obs. (C) Ballistic Reconst.

(D) Diffuse Reconst. (E) Combined Reconst. (F) Unknown Reconst.

Fig. 4.1. EM Reconstruction with 50 iterations, 10 images, FOV = 100mm x 100mm x 10mm,
dt = 2.5 mm, T = 1ms

T Ballistic Reconst. Diffuse Reconst. Oracle Unknown
1ms 34.26 39.33 40.93 40.43

10ms 38.09 39.21 41.08 40.60
100ms 41.79 39.26 44.17 43.85
154ms 42.31 39.35 44.88 44.66

Table 4.1
Summary of TRT image reconstruction Peak Signal-to-Noise Ratio (pSNR in dB).

image will tend to the diffuse reconstruction at T < Tcritical. This follows the analysis
in Section 2. The conservative nature of the Bonferroni Correction analysis can be
seen in Table 4.1, as the ballistic observation reconstruction does outperform (in a
pSNR sense) the diffuse observation reconstruction for acquisition times T shorter
than the Tcritical, although the Tcritical value does appear to be of the correct order of
magnitude.

5. Conclusions. This paper presented the resolution bounds and proposed a
novel MLE reconstruction algorithm for TRT imaging. Using the decision-theoretic
analysis approach, it is shown that for a given turbid medium, the smallest reliably
resolved object (in terms of the width wo) for both the conventional imaging and
ballistic regimes, can be derived. The image reconstruction algorithm is based on
a combination of the EM algorithm and Poisson denoising. Our simulation study
demonstrates the potential of our approach, in particular indicating the added benefit
of optimally fusing ballistic and diffuse photon data using the proposed EM algorithm.
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(A) Ballistic Obs. (B) Diffuse Obs. (C) Ballistic Reconst.

(D) Diffuse Reconst. (E) Combined Reconst. (F) Unknown Reconst.

Fig. 4.2. EM Reconstruction with 50 iterations, 10 images, FOV = 100mm x 100mm x 10mm,
dt = 2.5 mm, T = Tcritical = 154ms
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ABSTRACT
We introduce a class of robust non-parametric estimation meth-

ods which are ideally suited for the reconstruction of signals and

images from noise-corrupted or sparsely collected samples. The

filters derived from this class are locally adapted kernels which

take into account both the local density of the available samples,

and the actual values of these samples. As such, they are automat-

ically steered and adapted to both the given sampling “geometry”,

and the samples’ “radiometry”. As the framework we proposed

does not rely upon specific assumptions about noise or sampling

distributions, it is applicable to a wide class of problems includ-

ing efficient image upscaling, high quality reconstruction of an

image from as little as 15% of its (irregularly sampled) pixels,

super-resolution from noisy and under-determined data sets, state

of the art denoising of images corrupted by Gaussian and other

noise, effective removal of compression artifacts; and more.

Index Terms— Inverse problem, image reconstruction, piecewise

polynomial approximation, nonlinear estimation

1. INTRODUCTION
Image processing methods have been exploited through the years

to improve the quality of digital images. Many of the popular im-

age processing tools have a limited scope of use; some can only

be employed as denosing methods, while application of others

are limited to upscaling regularly sampled data. Moreover, such

methods estimate the underlying signal based on certain assump-

tions on data and noise models, a common example of which is

modeling the noise as pure additive i.i.d. Gaussian. Although

such limiting assumptions facilitate the design of optimal meth-

ods for a certain type of data, in real situations when the data and

noise models do not faithfully describe the measured signal, the

performance of such non-robust methods significantly degrades

[1].

Classical parametric image processing methods rely on a spe-

cific model of the signal of interest, and seek to compute the pa-

rameters of this model in the presence of noise. In contrast to

the parametric methods, non-parametric methods rely on the data

itself to dictate the structure of the model, in which case this im-

plicit model is referred to as a regression function [2]. We pro-

mote the use and improve upon a class of non-parametric meth-

ods called kernel regression [3], which generalizes some recently

presented methods namely, normalized convolution [4], bilateral

filter [5, 6], and moving least-squares [7].

This work was supported in part by DARPA/AFOSR Grant FA9550-06-1-

0047; by AFOSR Grant F49620-03-1-0387, and by the National Science Founda-

tion Science and Technology Center for Adaptive Optics, managed by the Univer-

sity of California at Santa Cruz under Cooperative Agreement No. AST-9876783.

The main advantage of the presented regression method is

that it is a generic framework enabling direct use in a variety of

applications, from single frame denoising to multi frame super-

resolution [3]. Moreover, this method produces better and more

stable results comparing to the state of the art methods in the

literature, as it is robust to modeling errors and data outliers.

This paper is organized as follows. Section 2 is a brief intro-

duction to the notion of adaptive kernel regression and the novel

concept of using weighted l1 norm penalty term in the kernel

regression framework. Section 3 extends and generalizes the pre-

vious related methods to derive the details of the proposed robust

regression method, focusing on appropriate choices for the ker-

nel function. Simulation results are presented in Section 4, and

Section 5 concludes this paper.

2. DATA-ADAPTED KERNEL REGRESSION
We treat the 2-D estimation problem where the measured data yi

at the position xi = [x1i, x2i]T is given by

yi = z(xi) + εi, i = 1, · · · , P, (1)

where z(·) is the (hitherto unspecified) regression function (i.e.

an unknown image) to be estimated, P is the number of measured

pixels, and εi’s are the independent and identically distributed

noise values (with otherwise no particular statistical distribution

assumed).

While the specific form of z(·) may remain unspecified, if we

assume that it is locally smooth to some order N , then in order

to estimate the value of the function at any given point x, we can

rely on a generic local expansion of the function about this point.

Specifically, if x is near the sample at xi, we have the N -term

Taylor series

z(xi) ≈ z(x) + {∇z(x)}T (xi − x)

+
1
2
(xi − x)T {Hz(x)}(xi − x) + · · · (2)

= β0 + βT
1 (xi − x)

+βT
2 vech

{
(xi − x)(xi − x)T

}
+ · · · , (3)

where ∇ and H are the gradient and Hessian operators respec-

tively, and vech(·) is the half-vectorization operator [2], which

lexicographically orders the “lower-triangular” portion of a ma-

trix into a column vector. Indeed the local approximation can be

also built upon bases other than polynomials [8]

The above suggests that if we now think of the Taylor se-

ries as a local representation of the regression function, estimat-

ing the parameter β0 can yield the desired (local) estimate of the

regression function based on the data. Indeed, the parameters



{βn}N
n=1 will provide localized information on the n-th deriva-

tives of the regression function. Naturally, since this approach is

based on local approximations, classical regression methods es-

timate the coefficients {βn}N
n=0 from the data while giving the

nearby samples higher weights than samples farther away (“ge-

ometric” weighting). However, it is also appropriate to weight

samples based on their relative location with respect to a local

edge (“radiometric” weighting), preforming the regression along

and not across the edges, which is the basis of modern adaptive

methods . A general formulation we propose, capturing this idea

is to solve the following optimization problem:

min
{βn}N

n=0

P∑
i=1

∣∣∣yi − β0 − βT
1 (xi − x)−

βT
2 vech

{
(xi − x) (xi − x)T

}
− · · ·

∣∣∣m K(xi − x, yi − y) (4)

where K(·) is the kernel function which penalizes both geomet-

ric and radiometric distances and will be described in detail in

Section 3, and m is the penalizing parameter. To the best of our

knowledge, all kernel regression based methods in the literature

choose the penalizing parameter as m = 2, and therefore pose

(4) as a weighted least-squares problem. In Section 4, we show

that robustness with respect to the outliers can be significantly

improved by exploiting other values for the penalizing parameter

such as m = 1, which in effect incorporates a robust l1 norm es-

timator [1] in the kernel regression framework. Furthermore, we

propose novel ways to adopt the kernel.

Using the matrix form, the optimization problem (4) can be

posed as weighted lm norm:

b̂ = arg min
b

∥∥y − Xxb
∥∥m

Wx
, (5)

where

y = [y1, y2, · · · , y
P
]T , b =

[
β0, β

T
1 , · · · , βT

N

]T

, (6)

Wx = diag [K(x1 − x, y1 − y), · · · , K(xP − x, yP − y)] , (7)

Xx =

⎡
⎢⎢⎢⎣

1 (x1− x)T vechT
{
(x1− x)(x1− x)T

} · · ·
1 (x2− x)T vechT

{
(x2− x)(x2− x)T

} · · ·
...

...
...

...

1 (xP − x)T vechT
{
(xP − x)(xP − x)T

} · · ·

⎤
⎥⎥⎥⎦ , (8)

with “diag” defining the diagonal elements of a diagonal matrix.

We use steepest descent to find the solution to this minimization

problem:

b̂
(n+1)

= b̂
(n)

+ αXT
xWxsign

“
y − Xxb̂

(n)
”
�

˛̨̨
y − Xxb̂

(n)̨̨˛m−1

, (9)

where α is a scalar defining the step size in the direction of the

gradient, and � is the element by element multiplication operator.

The order (N ) of regression affects the complexity of the

local approximation of the signal. In the non-parametric statis-

tics literature, locally constant, linear and quadratic approxima-

tions (corresponding to N = 0, 1, 2 respectively) have been most

widely considered [2]. In particular, choosing local constant es-

timation with m = 2, a locally linear adaptive filter is obtained,

which is known as the Nadaraya-Watson Estimator (NWE) [3].

In general, lower order approximates, such as NWE, result in

smoother images (large bias and small variance) as there are fewer

degrees of freedom. On the other hand over-fitting happens in re-

gressions using higher orders of approximation, resulting in small

bias and larger estimation variance. Note that, in the experiments

of Section 4 we used the second order (N = 2) approximation.

3. KERNEL FUNCTION SELECTION
The choice of kernel function greatly affects the quality of re-

construction. In this section, first we briefly review the classic

“non-adaptive” kernel function, and then generalize it to derive

two adaptive kernel functions with superior performance.

3.1. Classic Kernel Function
In classic kernel regression, samples are weighted based only on

their spatial distances to a sample of interest, which simplifies the

kernel K(·) in (4) to

K(xi − x, yi − y) ≡ KHi(xi − x), (10)

where KHi(·) is defined as

KHi(t) =
1

det(Hi)
K

(
H

−1

i t
)

, (11)

which penalizes distance away from the local position where the

approximation is centered. The 2 × 2 “smoothing” matrix Hi

controls the strength of this penalty. The standard choice of the

smoothing matrix is Hi = hµiI2, where µi is a scalar that cap-

tures the local density of data samples and h is the global smooth-

ing parameter, extending the kernel to contain “enough” samples.

As described in [3], in case of irregularly sampled data, it is rea-

sonable to use smaller kernels in the areas with more available

samples, whereas larger kernels are more suitable for the more

sparsely sampled areas of the image. The choice of the particular

form of the function K(·) is open, and may be selected as any

symmetric function, which attains its maximum at zero such as

Gaussian.

Since the shape of the classic kernels is independent of the

radiometric (gray level) information, as described in [3], classic

kernel based regression methods suffer from an inherent limita-

tion due to the local linear action on the data. In what follows,

we discuss extensions of the kernel regression method that en-

able this structure to have nonlinear, more effective, action on the

data. The proposed adaptive kernel functions rely on not only

the sample location and density, but also the radiometric proper-

ties of these samples. Therefore, the effective size and shape of

the regression kernel are adapted locally to image features such

as edges. This property is illustrated in Fig. 1, where the clas-

sical and adaptive kernel shapes in the presence of an edge are

compared.

3.2. Bilateral Kernel Function
A simple and intuitive choice of the adaptive kernel K(·) is to

use separate terms for penalizing the spatial and radiometric dis-

tances. Indeed this is precisely the thinking behind the bilateral

filter, introduced in [5, 6]. The bilateral kernel choice is then

K(xi − x, yi − y) ≡ KHi(xi − x)Khr (yi − y), (12)



Edge

Orientation vector

(a) (b)

Fig. 1. Kernel spread in a uniformly sampled data set. (a) Kernels

in the classic method depend only on the sample density. (b)

Adaptive kernels elongate with respect to the edge.

where hr is the radiometric smoothing scalar that controls the

rate of decay, and KHi(·) and Khr (·) are the spatial and radio-

metric kernel functions, respectively. In general, the application

of bilateral kernel is limited to denoising problem, since the pixel

value (y) at an arbitral position (x) might not be available from

data. This limitation, however, can be overcome by using an ini-

tial estimate of y by an appropriate interpolation technique [3].

Also, breaking K(·) into spatial and radiometric terms as utilized

in the bilateral case weakens the estimator performance since it

limits the degrees of freedom and ignores correlations between

positions of the pixels and their values. The following section

provides a solution to overcome this drawback.

3.3. Steering Kernel Function
Based upon the earlier non-parametric framework, the filtering

procedure we propose next takes the above ideas one step further.

In particular, we observe that the effect of computing Khr (yi−y)
in (12) is to implicitly measure a function of the local gradient es-

timated between neighboring values, and to use this estimate to

weight the respective measurements. As an example, if a pixel is

located near an edge, then pixels on the same side of the edge will

have much stronger influence in the filtering. With this intuition

in mind, we propose a two-step approach where first an initial

estimate of the image gradients is made using some kind of gra-

dient estimator (say the second order classic kernel regression

method). Next, this estimate is used to measure the dominant ori-

entation of the local gradients in the image. In a second filtering

stage, this orientation information is used to adaptively “steer”

the local kernel, resulting in elongated, elliptical contours spread

along the directions of the local edge structure. With these locally

adapted kernels, the denoising is effected most strongly along the

edges, rather than across them, resulting in strong preservation of

details in the final output. To be more specific, the steering kernel

takes the form

K(xi − x, yi − y) ≡ KHs
i
(xi − x), (13)

where Hs
i’s are the data-dependent full matrices which we call

steering matrices. They are defined as

Hs
i = hµiC

− 1
2

i , (14)

where Ci’s are (symmetric) covariance matrices based on the lo-

cal gray-values. A good choice for Ci will effectively spread the

kernel function along the local edges as shown in Fig. 1. It is

worth noting that even if we choose a large h in order to have

a strong denoising effect, the undesirable blurring effect which

would otherwise have resulted, is tempered around edges with

appropriate choice of Ci’s. With such steering matrices, for ex-

ample, if we choose a Gaussian kernel, the steering kernel is

mathematically represented as

KHs
i
(xi − x) =

p
det(Ci)

2πh2
exp

j
− (xi − x)T Ci(xi − x)

2h2

ff
. (15)

The local edge structure is related to the gradient covariance (or

equivalently, the locally dominant orientation). In [3] we have

shown that a convenient form of representing the covariance ma-

trix, is to decompose it into three components as follows:

Ci = γiUθiΛiUT
θi

, (16)

Uθi =
[

cos θi sin θi

− sin θi cos θi

]
, Λi =

[
σi 0
0 σ−1

i

]
. (17)

where Uθi is the rotation matrix and Λi is the elongation matrix.

Now the covariance matrix is given by the three parameters γi,

θi and σi, which are the scaling, rotation, and elongation param-

eters, respectively and the effect of which are as follows. First,

the initial circular kernel is elongated by the elongation matrix

Λi with semi-minor and major axes given by σi and σ−1
i , respec-

tively. Second, the elongated kernel is rotated by the matrix Uθi .

Finally, the kernel is scaled by the scaling parameter γi. We re-

fer the reader to [3] for the details of estimating these parameters

in an iterative fashion. We note that the presented formulation is

close to the apparently independently derived normalized convo-

lution formulation of [4].

4. EXPERIMENTS
In this section we compare the performance of the proposed algo-

rithm to other methods. We show that in presence of white Gaus-

sian noise the proposed robust kernel regression method works

as well if not better than the state of the art recent wavelet based

denoising method of [9], and other popular methods. We also

note that the wavelet method in general is computationally more

efficient than the steering kernel method. However, in presence

of other noise models (such as salt and pepper noise) while the

performance of non-robust methods dramatically degrades, the

proposed l1 based robust method effectively removes the noise.

The criterion for parameter selections in all the examples was to

choose parameters which gave the best RMSE values.

In the first experiment, we added white Gaussian noise with

standard deviation (STD) of 25 to the original image of Fig. 2(a)

resulting in the noisy image of Fig. 2(b). Denoised images us-

ing the wavelet1 method of [9]; classic kernel regression method

(m = 2, h = 1.33), steering kernel regression method (m = 2,

h = 1.33, 7 iterations initialized with l2 classic), steering kernel

regression method (m = 1, h = 3, 2 iterations initialized with

l1 classic) and corresponding Root Mean Square Error (RMSE)

values are shown in Fig. 2(c)-(f), respectively.

In the second experiment we added 20% salt and pepper noise

to the original image of Fig. 2(a) resulting in the noisy im-

age of Fig. 3(a). Denoised images using a 3 × 3 median filter,

wavelet method of [9], classic kernel regression method (m = 2,

1This result is produced by the software, available on

http://decsai.ugr.es/∼javier/denoise/index.html.



(a) Original (b) Noisy (c) Wavelet [9]

(d) l2 Classic (e) l2 Steering (f) l1 Steering

Fig. 2. Gaussian noise removal experiment. Corresponding

RMSE values for (b)-(f) are 25.0, 9.71, 11.36, 10.11, and 10.71,

respectively.

(a)Noisy (b) Median (c) Wavelet [9]

(d) l2 Classic (e) l2 Steering (f) l1 Steering

Fig. 3. Salt & pepper noise removal experiment. Corresponding

RMSE values for Figures(a)-(f) are 63.84, 11.05, 21.54, 21.81,

21.06, and 7.14, respectively.

h = 2.46), steering kernel regression method (m = 2, h = 2.25,

20 iterations initialized with l2 classic), steering kernel regression

method (m = 1,h = 2.25, zero iteration initialized with l1 clas-

sic) and corresponding RMSE values are shown in Fig. 3(b)-(f),

respectively.

In our final experiment, we added white Gaussian noise with

STD of 10 along with 5% salt and pepper noise to the original

image of Fig. 2(a). Then, we randomly eliminated 85% of these

noisy pixels, creating the sparse image of Fig. 4(a). Interpo-

lated and denoised images using the Delaunay-spline smoother

(refer to [3] for details), and the iterative steering kernel regres-

sion method (m = 1, h = 3, 0 iterations) and corresponding

RMSE values are shown in Fig. 4(b)-(c), respectively.

5. CONCLUSIONS
In this paper we promoted, extended, and demonstrated kernel

regression as a general framework for studying several efficient

denoising and interpolation algorithms. To overcome the inherent

limitations dictated by the linear filtering properties of the clas-

sic kernel regression methods, we introduced the non-linear data-

adapted class of kernel regressors with superior performance. Fur-

(a) Subsampled (b) Del. Spline (c) l1 Steering

Fig. 4. Sparse-noisy image interpolation experiment. (a) is the

input image with 85% of pixels removed, and further corrupted

by adding Gaussian and salt and pepper noise. Reconstructed im-

ages using the Delaunay-spline smoother (RMSE=22.5), and the

l1 steering kernel regression (RMSE=17.5) methods, are shown

in (b)-(c), respectively.

thermore, we achieved robustness with respect to outliers in data

and noise model by incorporating the l1 norm penalty in the ker-

nel regression framework. Image deblurring is also an important

issue in image reconstruction, and it is a part of our ongoing work

within this framework.
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ABSTRACT

We exploit recent advances in the physical design of fast op-
tical systems which enable active imaging with “ballistic”
light. In this modality, fast bursts of optical energy are prop-
agated into a medium, and the ballistic component of light
(which travels with minimal diffusive distortion) is detected
after transmission through the target and the medium. To im-
prove the detection rate of the common single pixel optimal
detectors, we exploit sampling at a diversity of locations in
space, and develop a multi-scale algorithm based upon the
Generalized Likelihood Ratio Test (GLRT) framework, which
takes advantage of the spatial correlation of nearby samples.
Experimental results show that objects of different size and
shape that are completely unrecognizable using the common
single pixel detection techniques, are detectable with very
high accuracy using the said multi-scale GLRT technique.

Index Terms— Ballistic Photons, Poisson Statistics, Adap-
tive Reconstruction, GLRT, Coherent Imaging, Turbid Media.

1. INTRODUCTION

High resolution imaging and detection of objects hidden in
a turbid (scattering) medium have long been challenging and
important problems with many industrial, military, and med-
ical applications. While turbid media such as fog, smoke,
haze, or body tissue are virtually transparent to radar range
electromagnetic waves, the resolution of radar-based imaging
systems is often insufficient for many practical applications.
On the other hand, while the resolution of imaging systems
using ultra short wavelengths (e.g. X-rays) is very desirable,
there exist potential health hazards for imaging subjects and
technicians alike.

As an alternative, imaging systems working in the optical/
infra-red spectrum range (laser scanners) are potentially able
to produce high resolution images without the likely health
hazards. Unfortunately, even a very thin and powerful colli-
mated laser beam quickly diffuses as it travels in turbid me-

WE WISH TO THANK PROFS. BENJAMIN FRIEDLANDER, INES
DELFINO, HEIKE LISCHKE, AND MOHAMMAD ALRUBAIEE FOR
PROVIDING INVALUABLE INFORMATION AND DATA THROUGH-
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dia, similar to a car’s headlights in fog. Therefore, a naive
approach to optical imaging of objects hidden inside a turbid
medium results in very blurry images, where targets are often
indistinguishable from each other or the background.

Fortunately, the advent of the new tunable solid state lasers
and ultra-fast optical detectors has enabled us to acquire high-
quality images through turbid media where the resolution is
only limited by diffraction. While many efficient imaging
systems for capturing high-resolution images through turbid
media have been proposed through the years, in this paper
we mainly focus on ultra-fast time-gated or coherent imaging
systems first introduced in [1].

Ultra-fast time-gated imaging is based on scanning the
region of interest (ROI) point-by-point by sending very fast
bursts of optical energy (laser pulses) and detecting the un-
scattered (coherent) photons that have passed through the
medium or reflected from the object. Although most of the
photons in a laser pulse are either randomly scattered (los-
ing their coherence) or absorbed as they travel through tur-
bid media, across short distances, a few photons keep their
coherence and pass through in straight lines without being
scattered. These coherent photons are commonly referred to
as the ballistic photons. Aside from the diffusive and ballistic
photons, the photons that are slightly scattered retaining some
degree of coherence are referred to as snake photons. Since
the diffusive and ballistic photons have different path lengths,
a femto-second laser pulse generator and an ultra fast time
gate can be paired to separate the relatively slow (delayed)
diffusive photons from the ballistic ones.

In what follows in this paper, we focus on studying and
improving the performance of ballistic imaging systems. In
Section 2, we describe a statistical model for the signal and
noise in a typical ballistic imaging scenario. In Section 3, we
study optimal single pixel detection systems and show that
better detection rates are achievable using a multi-pixel detec-
tion technique which is based on the GLRT principle. Section
4 concludes this paper.

2. STATISTICAL MODEL FOR BALLISTIC
IMAGING SYSTEMS

To have a better understanding of the practical issues involved
in photon limited imaging via ballistic systems, let us con-



sider the imaging system described in [2], where the pumped
Ti:Sapphire laser radiates 800nm pulses at a repetition rate
of 1 kHz and an average power of 60mW. It is easy to show
that the number of photons in each packet of energy (pulse) is
computed as

I0 =
Pulse Energy

PhotonEnergy
=

60×10−3×1s
1000

2.4830× 10−19
=2.4164×1014. (1)

Due to the statistical nature of pulse propagation, as a
laser beam travels through a diffusive medium, it is possi-
ble that some of the photons emerge without being scattered.
By selecting these unscattered “ballistic” photons, and reject-
ing the scattered (diffused) ones, it is possible to obtain non-
blurred images which are the sharp shadows of targets buried
in the diffusive medium.

As expected, in relatively long distances, the number of
detected ballistic photons is extremely small. Indeed, Beer’s
Law dictates an exponential relationship between the intensity
of the transmitted light, and that of the ballistic component as

Ib = I0exp(− d

L
). (2)

In this expression, I0 is the number of the generated photons
in one laser pulse before entering the turbid medium, Ib is
the number of the ballistic photons which survive traveling
through the medium, d is the distance traveled through the
medium, L = 1

µt
is the mean free path (MFP) length (average

distance photons travel before being scattered), and µt is the
medium extinction factor. From (1) and (2), it is clear that
for typical laser powers, it is fairly unlikely that any ballistic
photon survive imaging scenarios where the ratio of d/L is
larger than ∼ 30 MFP.

The exponential drop in the number of received photons
is the main prohibitive factor for using such high-resolution
optical imaging systems across long distances. In such imag-
ing scenarios, we are forced to rely on the less informative
snake and diffusive photons. In [3], an accurate yet compu-
tationally manageable mathematical model for diffusive light
propagation in turbid media is presented. An example of such
imaging modality and experimental analysis is presented in
[4] and some excellent literature surveys on the subject of dif-
fusive imaging systems are presented in [5]. However, imag-
ing systems that are able to time-resolve both ballistic and
diffusive photons are rather expensive and are not discussed
in this paper. Here, we focus on imaging systems that detect
ballistic photons only. We exploit these statistical studies to
improve the performance of ballistic imaging systems even in
long distances where the signal power is weak.

It is important to note that due to the stochastic nature of
photon propagation, Ib, calculated in (2), is merely the ex-
pected value of a Poisson random variable that estimates the
number of surviving ballistic photons. Moreover, we assume
that the received signal at the detector is contaminated with
some amount of independent Poisson noise due to shot noise

and other degrading effects. Therefore, since the received sig-
nal at the detector is the unweighted summation of two Pois-
son random variables, it can be modeled as a Poisson random
process with the following expected value

I = I0 e−µtd + Xe = Xs + Xe,

where Xe and Xs are the expected values of the noise and
signal, respectively.

Considering such imaging model, the probability density
function of the received signal is given by

f(y|Xs + Xe) =
N∏

k=1

e−(Xek
+Xsk

)(Xek
+ Xsk

)yk

yk!
, (3)

where yk is the k-th measurement, y = [y1, y2, ..., yk, ..., yN ]T ,
Xe = [Xe1 , Xe2 , ..., Xek

, ..., XeN
]T , and

Xs = [Xs1 , Xs2 , ..., Xsk
, ..., XsN

]T . Note that the laser emits
thousands of pulses per second and in practical implementa-
tion each spatial position is measured N times to improve the
quality of estimation, and therefore the model in (3) is pre-
sented in the vector form. Since the average power of laser or
the detector (and medium) characteristics are assumed not to
be changing abruptly, to simplify notations, we assume that
Xe1 = Xe2 = ... = XeN = Xe, and Xs1 = Xs2 = ... =
XsN

= Xs (extension to the more general time-varying sig-
nal and noise case is straight forward).

3. OPTIMAL DETECTION OF OPAQUE OBJECTS
IN TURBID MEDIA

In this section, assuming that the medium, laser, target, and
turbid medium are accurately calibrated, we present the sta-
tistical optimal detectors of opaque objects hidden in a turbid
medium.
3.1. Single Pixel Optimal Detection

In this subsection, we study the Neyman-Pearson (N.P.) type
statistical test [6] for detecting opaque objects hidden in a tur-
bid medium. In this test, we basically compare the likelihood
of the following two scenarios:

• H0: An opaque object is hidden in the scattering medium,
blocking the laser pulse ( i.e. measurements contain
only noise).

• H1: No opaque object exists in the propagation line of
the laser pulse (i.e. measurements contain noise plus
attenuated laser pulse).

The probability density function of these two scenarios when
such tests are repeated N times are given by

H0 : f(y|Xe) =
N∏

k=1

e−(Xe)(Xe)yk

yk!
,

H1 : f(y|Xs + Xe) =
N∏

k=1

e−(Xe+Xs)(Xe + Xs)yk

yk!
,(4)



and therefore the N.P. test is derived by comparing the log
likelihood ratio to a threshold as:

log
N∏

k=1




e−(Xe+Xs)(Xe+Xs)yk

yk!

e−Xe (Xe)yk

yk!


 H1

≷
H0

γ

=⇒
N∑

k=1

yk

H1

≷
H0

log(γ) + NXs

log(Xe+Xs

Xe
)

= γ′. (5)

Noting that
N∑

k=1

yk is yet another poisson process, the proba-

bilities of false alarm (PFA) and detection (PD) are computed
as

PFA =P{
N∑

k=1

yk > γ′|H0} = 1−
γ′∑

k=0

e−NXe(NXe)k

k!
, (6)

PD = 1−
γ′∑

k=0

e−NXe−NXS (NXe + NXS)k

k!
. (7)

3.2. Multi-pixel GLRT Detection

As explained in Section 1, in ballistic imaging the field of
view is scanned at multiple points to create a 2-D image of
the objects in the ROI. In this section, we propose an effective
algorithm that exploits the spatial correlation of the nearby
samples in a multi-pixel imaging scenario to improve on the
performance of the single pixel optimal detectors developed
in the previous section.

The proposed multi-pixel detection technique generalizes
the single pixel detection techniques and preforms optimal
tests on “super-pixels”, which are the collective intensities of
a set of neighboring pixels in size and shape of the hidden
objects. However, since in general the size and shape of the
hidden objects is not known a priori, we develop a GLRT
based algorithm that simultaneously tests the existence, and
estimates the shape and size of the objects hidden in turbid
media.

The outline of the proposed GLRT algorithm is illustrated
by an example in Fig.1. First, for a given (fixed) false alarm
rate the optimal detectors developed in the previous section
are exploited to test the existence or absence of objects at each
individual pixel. As an illustrative example, this test is applied
to the central pixel (shaded) of Fig.1(a), where the measured
pixel value (0.4) is compared to the N.P. test threshold (0.5).
Of course, the greater the distance of the measurement from
the threshold, the more confident we are in the accuracy of
the test result. Next, we integrate the gray-level values of all
immediate neighboring pixels, and in effect consider them as
one “super-pixel”, as illustrated in Fig.1(b). Since the false
alarm rate is fixed for all scales, the decision threshold is
different than the threshold calculated in the previous step,
which is recalculated based on the grayvalue of the super-
pixel. In the next steps, we repeat this process by fixing the
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Fig. 1. An illustrative example showing the outline of the pro-
posed multi-scale GLRT algorithm. a: Scale 1 measurement.
b,c: Scales 2,3 super-pixels, respectively. d-f: Confidence
values for scales 1-3, respectively. The check marked second
scale gives the highest confidence value for the central pixel.

false alarm rate and considering larger neighborhoods. The
generalized N.P. test for these steps is formulated as follows

yscale
m,l

H1

≷
H0

log(γscale) + NscaleXs

log(Xe+Xs

Xe
)

, (8)

where yscale
m,l is the summation of the pixel values in the

Nscale = N(2× scale−1)2 pixels neighborhood around the
pixel [m, l] (note that other neighborhood expansion strate-
gies with different shape and size can be also considered in
this algorithm). Our confidence in the decision made on each
scale is defined as the distance between the summation of
measurements in the super-pixel and that of the threshold set
by the GLRT:

Confidencescale
m,l = |yscale

m,l − log(γscale) + NscaleXs

log(Xe+Xs

Xe
)

| . (9)

Note that the optimal scale is not unique for all pixels, as finer
scales are more suitable for pixels located on the texture or
edge areas, and coarser scales are more suitable for the pixels
located in flat areas. Therefore, we decide on the presence or
absence of the object at a particular pixel based on the test re-
sult of the scale that shows the highest confidence value. The
memory requirement of this technique is independent of the
maximum scale number, since we only need to keep the orig-
inal image, the last estimated image and the corresponding
confidence values.

To have a better understanding of the proposed multi-scale
GLRT technique and its performance, we set up an illustra-
tive controlled imaging scenario. Fig.2(a) shows ideal (noise-
less and deterministic) image of objects of different size and
shape. To depict an experiment at the limit distance where the
signal of interest is very weak, we consider an imaging sce-
nario where the average number of received ballistic photons



for each pixel is one photon. Fig.2(b) shows such Poissonian
random signals (yet free of noise effects). Detection of such
signals becomes more difficult when we consider the system
noise as illustrated in Fig.2(c), where the Poisson noise vari-
ance is 40. Fig.2(d) is an image reconstructed by implement-
ing the point-by-point single pixel detection techniques, con-
sidering a false alarm rate of 0.00125, where none of the ob-
jects are correctly identified. On the other hand, Fig.2(e) is the
result of exploiting the multi-scale GLRT technique, showing
a considerably more accurate detection of such objects.

Fig.2(f) illustrates the scale from which each pixel in the
final image of Fig.2(e) is selected. Note that as expected, the
pixels in the flat area are selected from the coarser scales,
while the pixels on the edge areas are selected from the finer
scales. Fig.2(g) shows the confidence in the detection re-
sult (9) with respect to the corresponding pixels. This figure
shows higher confidence levels in the flat, and less confidence
in the edge areas. Also, in Fig.2(g) we see that the area with
the lowest confidence is the place where most misclassifica-
tions happen. This is good news, since to increase the detec-
tion rate, we may opt to do a second (and very quick) round of
scans, sampling only on these very low-confidence regions. In
Fig.2(h), we plot the misclassification rates at each scale (blue
line), and compare it to the overall multi-scale one (red line).
These experimental plots show that the performance of the
proposed pixelwise GLRT technique (depending on the noise
level) is either very close or even better than the best fixed
scale technique. In Fig.2(i), the performance of single pixel
detection technique is compared with the multi-scale ones via
their corresponding ROC curves (with 25 Monte Carlo exper-
iments). Once again, the multi-scale technique shows the best
or close to the best performance.

4. CONCLUSION

In this paper, we studied a technique for improving the qual-
ity of the ballistic images captured through turbid media.The
novelty of this paper is in combining the recent advances in
optical science with the novel image processing and statistical
signal processing techniques.
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Fig. 2. An ideal deterministic and noise free image of four
objects of different size and shapes is shown in (a). (b) shows
the corresponding image as a Poissonian noise free stochastic
signal, with Xs = 1. (c) is the result of adding Poisson noise
(Xe = 40) to (a). (d) is the result of the single pixel detec-
tion, and (e) is the result of the proposed multi-scale detection
technique. (f) shows an image that corresponds to the selected
scales for the image shown in (e), and (g) shows the corre-
sponding confidence values. (h) shows the misclassification
probability in different scales. ROC plots for the proposed
multi-scale detection scenario are shown in (i). The numerical
labels “1,4,...,23”, correspond to the scale at which detection
tests are performed, and the plot labeled “Final” represents the
performance of the proposed multiscale (fused) technique.
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A DECISION-THEORETIC APPROACH TO TRANSILLUMINATION IMAGING IN
BIOLOGICAL MEDIUMS
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ABSTRACT

The tradeoffs between ballistic imaging (time-gated imaging
of first-arrival, unscattered photons) and conventional imag-
ing for resolving tumors in biological scattering media are
examined. For ballistic imaging, closed form expressions are
derived to characterize the resolvability using five degrees of
freedom (laser intensity, scattering coefficient, thickness of
medium, false alarm rate, and number of observations). For
conventional imaging, a numerical approximation is used to
find the asymptotic resolution using the scattering and ab-
sorption coefficients of the medium. Using the characteri-
zations of both approaches, a decision-theoretic approach to
determining the minimum resolvable object size is developed,
which provides clear guidelines as to when time-gated ballis-
tic imaging methods offer advantages over conventional imag-
ing. The theoretical predictions are validated through a real-
istic simulation of tumors in breast tissue.

Index Terms— Transillumination Imaging, Decision The-
oretic, Resolution, Ballistic

1. INTRODUCTION

Ballistic photon imaging is a promising methodology for
studying highly scattering media such as human tissue. Re-
cent advances allow for the time-gating of early arriving pho-
tons introduced into a scattering (turbid) medium. This allows
for the ability to separately detect unscattered or ballistic pho-
tons that exit the medium. Due to the lack of scattering, these
photons will retain the spatial information of the medium. A
tradeoff occurs, as the number of ballistic photons decays ex-
ponentially fast as the thickness/depth of the turbid medium
increases. This results in an observation from ballistic pho-
tons that offers a high resolution but low SNR.

The basic imaging model considered here is a single laser
point source and a single photon detector placed on either
side of a turbid (scattering) medium. We assume that the
source and detector can be positioned at arbitrary points, to
allow probing through any desired set transects through the
medium. A turbid medium can be considered any scatter-
ing material, and in this specific analysis we assume it to be

This work was partially supported by DARPA/AFOSR grant number
FA9550-06-1-0047.

a homogeneously scattering section of human tissue. This
scattering material will be parameterized by the number of
scatters per unit length (µm

s ), the fraction of absorptions per
length (µm

a ), and the length of the medium (dm). At certain
points between the source and detector in the medium there
may exist an occluder of interest. The occluders, which are
assumed to be opaque, represent tumors embedded in tissue
for a biomedical imaging application. We assume that the
occluders are located at the mid-point of the medium being
probed, as this is the point in the medium where the variance
of the scattering will be at a maximum [1,2]. To completely
define the environment, one must take into consideration the
scattering properties of the occluding tumor (µt

a, µt
s), and the

physical properties of the occluding tumor (depth = dt, width
= wt).

Figure 1. Turbid Medium Model Example

To create an observation of the environment, the source
and detector pair will make a raster scan of the field of
view to create an estimated cross-section of the environment.
Our goal is to find, given the parameters of the medium
and the occluder, lower bounds on the width and depth of
the occluder (dt, wt) that can be reliably resolved in the
medium. Two imaging regimes will be considered, the bal-
listic regime where only early arriving photons are detected
using high-speed gating mechanisms, and the conventional
imaging regime, where all the photons arriving at the detec-
tor are utilized (i.e., no time-gating). The advantage of the
ballistic photons is that they are not scattered, providing very
high spatial resolution. The limitation of ballistic imaging
is that very few photons will propagate through the medium
without scattering, resulting in a very poor signal-to-noise ra-



tio (SNR). Conventional imaging uses all photons (scattered
and unscattered) and thus provides a complementary trade-off
(lower resolution but higher SNR). A decision-theoretic tech-
nique is then derived to determine which technique should be
used for a given parameterized scattering medium in order to
resolve small tumors.

2. BALLISTIC ANALYSIS

The ballistic imaging regime consists of probing points in a
Field-of-View (FOV ) and acquiring a count of the number of
ballistic photons that arrive at each point in the FOV . These
photons traverse in a straight line-of-sight between the source
point and the detector, and therefore retain the spatial charac-
teristics of the occluding objects in the turbid medium. Due
to their direct line-of-sight characteristics, these photons will
travel the shortest length and will arrive at the detector be-
fore any scattering photons. In order to collect only ballistic
photons, time-gating is performed to restrict the observation
to only early arriving photons (i.e. photons with no scattering
events). If a perfect occluder is in the line-of-sight between
the source and detector, then no ballistic photons will arrive
at the detector. Therefore, the detection of ballistic photons
indicates a “clear” line-of-sight and the absence of a tumor
along the given transect. However, a problem occurs – as the
turbidity of the medium increases, the less likely a photon is
to arrive at the sensor having no scattering events. As a conse-
quence, the total number of ballistic (non-scattering) photons
for a medium might be very low. In addition, stray “noise”
photons from other sources corrupt the observed signal, re-
sulting in an observation that has high spatial resolution, but
low SNR.

2.1. Ballistic Imaging - Single Point

The detected time-gated photons are ballistic photons from
the source or stray “noise” photons arriving during the time-
gate interval from other ambient light sources. The problem
of determining whether or not a tumor lies along the line-of-
sight can be cast as a statistical hypothesis test, as follows.
Given a received photon count X at the sensor, one must
choose between two possible situations. The first situation,
is that no occluding tumors exist in the path between the laser
and the sensor (H0). The alternative is that there is an occlud-
ing tumor along the line-of-sight between the laser and the
sensor (H1). Tumors can be considered to be significantly
more turbid scattering medium than the healthy tissue [3],
and therefore the detector will collect an attenuated number
of ballistic photons (compared to H0) along with the noise
photons.

We define the number of noise photons that will arrive at
the detector as P (tλ0) (where X ∼ P(λ) is a Poisson dis-
tributed random variable with mean = λ, and where t is the du-
ration of photon acquisition time-gating). The ballistic pho-

tons traveling through only healthy tissue will beP (
tλL(tissue)

)
(where λL(tissue) = λL (exp (−µmdm))), while the ballistic
photons traveling through both healthy tissue and tumor will
be P (

tλL(tissue+tumor)

)
(where λL(tissue+tumor) =

λL (exp (− (µmdm − µmdt + µtdt))), with λL is the expected
number of photons sent through the medium by the laser per
unit time, µm = µm

s + µm
a , and µt = µt

s + µt
a).

This can be expressed as a hypothesis test with the null hy-
pothesis (only tissue) defined asH0 : X ∼ P (

t
(
λ0 + λL(tissue)

))
and the true hypothesis (tissue and tumor) defined as H1 :
X ∼ P (

t
(
λ0 + λL(tissue+tumor)

))
. As the mean of the

Poisson distribution grows, the probability distribution tends
to a Gaussian. Averaging repeated trials (i.e. averaging of
multiple laser pulses) therefore results in a Gaussian distributed
statistic. Using the Anscombe Transformation [4], we obtain
the following relationship (where X ∼ N (

µ, σ2
)

is a gaus-
sian distributed random variable with mean = µ and variance

= σ2) then X ∼ P (λ) ⇒ 2
√

X + 3
8 ∼ N

(
2
√

λ, 1
)

. Defin-
ing a new variable representing the Anscombe Transformed

statistic X ′ = 2
√

X + 3
8 the hypothesis test becomes:

H0 : X ′ ∼ N
(

2
√

t
(
λ0 + λL(tissue)

)
, 1

)
(1)

H1 : X ′ ∼ N
(

2
√

t
(
λ0 + λL(tissue+tumor)

)
, 1

)
(2)

The decision test is now defined as
(
X ′ ≶H1

H0
γ′

)
. Using

the test, a user-specified false alarm rate (α) determines the
value of the threshold (γ′) such that P (X ′ < γ′ | H0) ≤ α.

2.2. Ballistic Imaging - K Points

The problem now is modified to trying to image a fixed square
array of (

√
K x

√
K) points. This results in a multiple hy-

pothesis testing problem (K tests), and for large K it is diffi-
cult to control the overall probability of false-alarm (i.e., false
tumor detection at one or more point). A standard technique
is to increase the acquisition time (t) for each point, but by
the setup of the problem increasing t will increase not only
the number of signal photons, but also the number of noise
photons. This puts a lower bound on the SNR of the obser-
vation. To boost the SNR, one could use spatial aggregation
by averaging over a number of observation points. This mod-
ifies the problem to averaging neighborhoods of points in an
area measuring

√
M x

√
M , M < K, effectively reducing

the spatial resolution of the detection map (image). By de-
creasing the spatial resolution, this also decreases the variance
at each point, modifying the decision test to:

H0 : X ′ ∼ N
(

2
√

t
(
λ0 + λL(tissue)

)
,

1
M

)
(3)

H1 : X ′ ∼ N
(

2
√

t
(
λ0 + λL(tissue+tumor)

)
,

1
M

)
(4)



This test is under the assumption that the averaging win-
dow will contain either no occluder points or all occluder
points. In reality, the averaging filter will result in an observed
point: X ′′ ∼ N (

ρE [X ′|H0] + (1− ρ)E [X ′|H1] , 1
M

)
(where ρ is the fraction of the window containing non-
occluders). Our goal is to find the lower bound on the value of
M that will guarantee an overall false alarm rate of less than
α, we consider the ideal case (all occluders or non-occluders)
in our calculations in order to obtain closed-form solutions.

2.2.1. Bonferroni Correction

The Bonferroni Correction approach is a conservative method
of controlling the false alarm rate for a detection problem un-
der multiple i.i.d. tests [5]. The correction adjusts the thresh-
old for each individual test in order to satisfy a lower (per test)
false alarm rate value ( α

K ) such that each of the fixed number
K-points in the array (and M-point averaging filter) satisfies(
P (X < γ′|H0) ≤ α

K

)
. With Φ(x) as the cumulative distri-

bution function of the N (0, 1) density at the point x, this re-

sults in
(
γ′ ≤ 1√

M
Φ−1

(
α
K

)
+ 2

√
t
(
λ0 + λL(tissue)

))
. To

give a satisfactory observation, we also bound the miss prob-
ability for detecting a ballistic photon by the same modified
value ( α

K ) such that
(
P (X > γ′|H1) ≤ α

K

)
. Using the miss

bounds, we determine the lower bound on the necessary aver-
aging window size (M) to image a fixed K-point array.

M ≥



1
2
√

t

(
Φ−1

(
1− α

K

)− Φ−1
(

α
K

))
(√

(λ0 + λtissue)−
√

(λ0 + λtissue+tumor)
)




2

(5)

The minimum width of the occluding tumor (wt
ballistic)

that can be reliably resolved for a given parameterized turbid
medium can now be derived. Using the lower bound for M
found in Eqn 5, we can solve for the lower bound on the width

using wt
ballistic =

√
FOV ∗M

K . Due to M being a function
of the tumor depth dt, we can also numerical solve for the
minimum tumor depth possible for a parameterized system.

2.2.2. False Discovery Rate

While the closed form resolution bounds for the Bonferroni
Correction were derived, it is a very conservative approach
and may obtain a poor reconstruction in order to avoid false
alarm errors. To improve the reconstruction, we can increase
the resolution by decreasing the M value (averaging filter
size), and then use a modified False Discovery Rate (FDR)
algorithm [6] for the multiple point test. To obtain the thresh-
old, take the K number of observed signal values and deter-
mine the p-value (pi) under each observed value (X ′

i).

pi = P (x < X ′
i | H0) (6)

= Φ
(√

M

(
X ′

i − 2 ∗
√

t
(
λ0 + λL(tissue)

)))
.(7)

To choose the FDR threshold (γ′), take the threshold cor-
responding to the largest index (n) such that pn ≤
1 − (1− α)

1
K+1−n . In practice, False Discovery Rate will

result in a less conservative reconstruction, but it cannot be
analyzed to obtain closed form bounds.

3. CONVENTIONAL IMAGING ANALYSIS

In the conventional imaging regime, there is no time-gating
mechanism and all the photons that reach the detector over
a long acquisition time will be observed (acquisition time
À (

d
c

)
= direct line-of-sight flight time). Therefore, a large

number of photons sent through the medium will be collected
by the detector. A problem occurs here, too — while the
signal-to-noise ratio is high due to the large number of pho-
tons, the average number of scattering events on each pho-
ton collected will also be high. As the number of scatter-
ing events increases for a photon, the less the photon will re-
tain the spatial resolution of the occluding object. The lack
of spatial information results in a blurred observation. Us-
ing random walk theory in [2], it is possible to solve for the
minimum width of an occluding tumor that is reliably re-
solved using the conventional imaging regime. The width
is found using the photon mean-time-of-flight 〈∆t〉, which
can be numerically solved as a function of the parameters
of the medium (µm

s , µm
a ). The minimum width is equal to

wt
conv = 0.408

(
〈∆t〉c
µm

s

) 1
2

.

4. OPTIMAL RESOLUTION TRADEOFFS

Ideally, one should choose the imaging system (ballistic or
conventional) that reliably resolves the smallest possible ob-
ject (wt = min (wt

conv, wt
ballistic)). The decision test wt

conv
conv

≶
ballistic

wt
bal, using the minimum resolvable sizes derived

above becomes: 0.408
(
〈∆t〉c
µm

s

) 1
2 conv

≶
ballistic

√
FOV ∗M

K . Using

the lower bound of M from Eqn. 5, one can solve for the
critical distance (dm = dcritical), the maximum distance at
which ballistic still offers superior resolution relative to con-
ventional imaging.

4.1. Simulation Study - Breast Tissue

We now present a simulation study of imaging malignant
breast tissue through healthy breast tissue. For this simu-
lation, a 10cm x 10cm FOV (as a K=2562 point array) is
defined with circular occluding objects of diameter 0.2 cm,
0.4 cm, 0.8 cm, 2.0 cm, and 4.0 cm. From [3], we use the
scattering and absorption coefficients of the two tissue types.
Using a specified depth of the occluding tumor (dt=0.25cm)
and false alarm rate (α = 0.05), we solve for the minimum
width of the occluding tumor under the ballistic observation



with Bonferroni Correction testing (wt
bal(bon), along with the

size of the averaging filter M ), and the conventional imag-
ing observations minimum occluding width (wt

conv). To ob-
tain a better observation of the model, a higher resolution
(wt

bal(fdr) = 3
4wt

bal(bon)) observation using the False Discov-
ery Rate (FDR) method was also simulated. Three medium
distances (dm = 1.6, 1.7, 1.8 cm) are used to show the effects
that the distance of the medium has on the number of ballistic
photons received.

1(A) Ballistic Obs. 1(B) Bonferroni 1(C) FDR

2(A) Ballistic Obs. 2(B) Bonferroni 2(C) FDR

3(A) Ballistic Obs. 3(B) Bonferroni 3(C) FDR

Figure 2. Simulations under FOV = 10x10cm, dt = 0.25 cm
(1) dm = 1.6 cm, (2) dm = 1.7 cm, (3) dm = 1.8 cm

dm M wt
bal(bon) wt

conv pSNRbon pSNRfdr

1.6 31 0.217 1.012 15.52 16.34
1.7 301 0.678 1.04 11.27 11.33
1.8 3195 2.21 1.07 5.73 6.21

Table 1. Derived properties of the malignant/healthy
breast tissue environment (distances in cm, pSNR in dB)

Figure 2 shows the effect of distance on the resolution
of the observed image. One can observe the ballistic obser-
vation with Bonferroni Correction testing width size increas-
ing dramatically as d → dcritical (numerically found here to
be =1.73cm), this is due to the Bonferroni Correction being
a very conservative estimate. For d ≥ dcritical one can ob-
serve that the conventional imaging observation performs sig-
nificantly better than the ballistic observation under Bonfer-
roni (wt

bal(bon) ≥ wt
conv). As stated previous, the Bonferroni

Method obtains a lower bound for the resolution of the obser-
vation while retaining the false alarm rate. Using the higher

resolution False Discovery Rate (FDR) approach, we obtain a
higher SNR than the conservative Bonferroni approach while
maintaining the false alarm rate. A point of interest is that the
filter window will generally contain both occluding and non-
occluding points (non-ideal case), but this does not greatly
degrade the reconstruction quality.

5. CONCLUSIONS

Using the decision-theoretic analysis approach, it is shown
that the resolution of the turbid medium, the smallest reli-
ably resolved object (in terms of the width wt) for both the
conventional imaging and ballistic regimes, can be derived.
For the ballistic regime, a trade-off between resolution, dis-
tance, laser intensity and confidence level was shown. The
ballistic regime was considered under two multiple hypoth-
esis test method, the Bonferroni Correction and False Dis-
covery Rate. Under the conservative Bonferroni Correction,
the optimal choice between ballistic and conventional imag-
ing was derived and can be used to find the best reconstruction
technique for a given system as a function of the parameters
of the medium. Using the False Discovery Rate approach,
it was shown how to obtain a higher resolution observation
while still maintaining a specified false alarm rate.
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ABSTRACT

Recently technological advances now enable time-gated ac-
quisitions of photons at very fast rates. This can allow one to
separate scattered and unscattered photons in transillumina-
tion imaging. Time-resolved transillumination (TRT) imag-
ing opens the door to an new type of imaging through turbid
(scattering) media such as soft tissue and fog/smoke, and ex-
citing potential applications in bioimaging and surveillance.
This paper proposes a novel Maximum Likelihood based ap-
proach to TRT image reconstruction.

Index Terms— Image reconstruction, Poisson processes,
EM Algorithm, Time-resolved Transillumination Imaging

1. TIME-RESOLVED TRANSILLUMINATION
IMAGING

Recently technological advances now enable time-gated ac-
quisitions of photons at very fast rates, fast enough to sep-
arately collect unscattered (first arrival) and scattered (later
arrival) photons in transillumination imaging [1]. We refer
to this technology as time-resolved transillumination (TRT)
imaging, which is described in more detail in the next para-
graph and depicted in Fig. 1. TRT opens the door to an new
type of imaging turbid (scattering) media (e.g., soft tissue,
fog/smoke). The ability to separately detect unscattered or
ballistic photons can enable much higher resolution imaging
than possible using conventional imaging devices, and this
has exciting potential applications in bioimaging and surveil-
lance. However, the number of ballistic photons decays ex-
ponentially fast as the thickness/depth of the turbid medium
increases. Therefore, the high resolution information that is
available is also in a very low SNR regime. This paper ex-
plores a novel approach to TRT image reconstruction.

In more detail, the TRT imaging problem involves of pho-
tons traveling through a turbid medium from an source, through
an object plane, and then onto an imaging plane as depicted

This work was partially supported by DARPA/AFOSR grant number
FA9550-06-1-0047.

in Fig. 1. Photons traveling through a scattering medium can
be roughly classified into three types: ballistic, snake, and
diffuse. Ballistic photons experience no scattering and travel
in a direct line of sight arriving first at detectors in the im-
age plane. Because of the lack of scattering, ballistic pho-
tons retain their spatial information and arrive at the imag-
ing plane at the same relative location as sent from the ob-
ject plane. Snake photons experience some slight scattering
through the medium, this scattering will cause these photons
to arrive later than the ballistic photons and likely in a slightly
different location than sent from the object plane. Diffuse
photons experience large amounts of scattering and arrive at
the image plane having lost most of their point of origin infor-
mation. Due to the large number of scattering events through
the medium, the diffuse photons will travel the farthest dis-
tance to the image plane, and therefore will arrive after the
snake and ballistic photons. While the inherent spatial in-
formation decreases in order of ballistic, snake and diffuse
photons, the number of photons (and hence inherent SNR)
increases in the same order. So we are face with high resolu-
tion, low SNR data at one extreme (ballstic), and low resolu-
tion, high SNR data at the other (diffuse). Furthermore, the
diffusion and SNR parameters, which characterize the under-
lying point spread function (PSF), are not known precisely in
practice.

Fig. 1. Example of Photons Through a Scattering Medium



The TRT image reconstruction problem is essentially a
statistical inverse problem (a particular form of photon-limited
image reconstruction), but to the best of our knowledge our
work here is the first to formally pose it as such. Due to
uncertainties in the PSF, the TRT problem somewhat related
to blind image deconvolution (BID). While BID is a well-
studied problem, there are several unique aspects in the TRT
imaging problem that make it quite different from standard
BID problems. In particular, the distinctive features of TRT
imaging include the photon-limited nature of the data, the
time-gated data acquisition which in effect yields information
at multiple spatial resolutions that can be fairly well char-
acterized via a diffusion equation, and most importantly the
availability of “unblurred” data corresponding to the ballistic
photons. For these reasons “off-the-shelf” BID algorithms are
not directly applicable to TRT image reconstruction.

This paper is organized as follows. In Section 2 we pro-
pose a statistical model for TRT imaging through a homoge-
neous turbid medium. In Section 3 we review a multiscale
Poisson denoising technique that can be applied directly to
the ballistic data, and will also be an integral component of
our overall reconstruction procedure. In Section 4 we show
that an Expectation-Maximization (EM) algorithm based on
the Poisson denoising scheme can be used to solve the image
reconstruction problem when one has perfect knowledge of
the scattering properties of the medium. In Section 5 we pro-
pose a novel scheme (based on the EM algorithm) for com-
puting the joint Maximum Penalized Likelihood Estimate of
the underlying image intensity and key diffusion and SNR
parameters of the scattering environment. Section 6 evaluates
the performance of our scheme in simulations and concluding
remarks are made in Section 7.

2. A STATISTICAL MODEL OF
TRANSILLUMINATION IMAGING

The basic statistical model we propose for TRT imaging through
homogeneous turbid media is as follows. Assume that we
have k time-resovled “snapshots” , each acquired over dis-
joint time intervals T1, . . . , Tk, with T1 denoting the ballistic
time interval. Assume that these intervals form a uniform par-
tition of the overall observation interval T . Let X1, . . . , Xk

denote the photon data acquired in each interval, respectively.
Specifically, the data Xi are acquired in the form of an n-
pixel image, and for our mathematical exposition we assume
that the columns of this image are “stacked” to form an n× 1
vector. Each pixel value in Xi is simply the number of pho-
tons detected at the corresponding location during the time
interval Ti. Each image is Poisson distributed according to
the following model:

Xi ∼ Poisson(αiPiλ), i = 1, . . . , k, (1)

where λ denotes the underlying n × 1 image intensity func-
tion, Pi denotes the n × n photon transition matrix from the

emission (source) plane to the detection (image) plane, and
αi > 0 is a scalar gain factor. The transition matrices are
functions of time and a scalar diffusion bandwidth parameter
denoted by σ2. In particular, according to the basic physics of
photon propagation through turbid media [1], row s of Pi is
a probability mass function modeled by a sampled Gaussian
density with mean s and variance proportional to σ2ti, where
ti denotes the midpoint of the i-th acquisition time-interval.
Thus, the transition matrices are parametric functions of the
form Pi = P (σ2ti). We assume that λ is normalized such
that the intensities in λ sum to one (i.e.,

∑n
j=1 λj = 1). Also

the transition matrices are normalized so that µi = Piλ also
satisfies

∑n
j=1 µi,j = 1. With these normalizations, it is easy

to verify that the “total” intensity (integrated spatially over
the image plane and temporally over the i-th time-interval) is
αi. Furthermore, we adopt the convention that the ballistic
image resolution is the finest spatial resolution available and
assume that P1 = In×n, the n × n identity matrix. We also
assume that the images acquired in each time-interval are sta-
tistically independent, and so the joint distribution function of
the entire data record X = [XT

1 , . . . , XT
k ]T (the superscript

T denotes matrix transposition) is

X ∼ Poisson(Pλ), (2)

where P is the kn× n transition matrix obtained by stacking
the matrices α1P1, . . . , αkPk; i.e., P = [α1P

T
1 , . . . , αkPT

k ]T .
Let us constrast this imaging system with a conventional

system in which the photon detections are not time-resolved.
In this case, we acquire the aggregated photon image Xa =
X1 + · · ·+ Xk which obeys the model

Xa ∼ Poisson(Paλ), (3)

where Pa =
∑k

i=1 αiPi. We will see that the extra “infor-
mation” available in the time-resolved photon acquisition can
significantly improve our ability to estimate the underlying
intensity λ.

3. PHOTON-LIMITED IMAGE DENOISING

The ballistic photon image X1 has high spatial resolution but
extremely poor SNR due to the very limited number of bal-
listic photons. As a starting point for our work, let us con-
sider the problem of estimating the underlying image inten-
sity based on the ballistic photon data alone. This boils down
to a Poisson image “denoising” problem, which has recently
received a significant amount of attention in the image pro-
cessing and statistics literature.

One state-of-the-art Poisson denoising scheme is based
on the recursive dyadic partition (RDP) framework proposed
in [2]. This scheme is a Poisson analog of the more fa-
miliar wavelet denoising methods developed for the classi-
cal “signal+noise” model. Also like wavelet denoising, addi-
tional improvements in denoising quality are possible using



a translation-invariant version of the basic approach [3, 4],
which can be computed in O(n log n) operations.

The Poisson denoising method will be an integral compo-
nent of our EM algorithm for time-resolved transillumination
imaging. The EM algorithm optimally combines information
from the entire record time-resolved photons (i.e., from the
ballistic, quasidiffuse and diffuse limits). But before moving
on, let us illustrate the performance of the method by esti-
mating the underlying image intensity using only the ballistic
photon data. Figure 2 depicts the results of denoising a bal-
listic photon image using the methodology described above
(specifically, we employ the translation-invariant Haar esti-
mation scheme described in [4] and implemented in the su-
perb Matlab package developed by Prof. Rebecca Willett [5]).
Note that the denoising method results in an intensity estimate
that reduces “noise” while preserving edges and other details.

(a) Image Intensity (b) Ballistic Data (c) MPLE

Fig. 2. Example of ballistic photon image MPLE denoising.

4. AN EM ALGORITHM FOR IMAGE
RECONSTRUCTION

If the attenuation factors {αi} and scattering matrices {Pi}
are known, then the MLE of λ given X (or given Xa) can be
computed using the well-known Expectation-Maximization
(EM) algorithm [6]. For the general problem, the standard
E and M steps are computed using X and P , while in the case
of aggregated photon data the steps employ Xa and Pa. The
algorithm is initialized with a starting guess for MLE of λ
(e.g., all pixels set to 1).

Under mild conditions, the sequence of estimates con-
verges to an MLE solution. Unfortunately, because P is usu-
ally poorly-conditioned, the exact MLE solution is usually
undesirable. For example, in the case of the ballistic data
alone, the MLE of λ is simply X1, which as seen from Fig-
ure 2, is highly variable and typically has a very poor MSE.
So, instead of seeking the MLE we aim to recover a Maxi-
mum Penalized Likelihood Estimate (MPLE), using the Pois-
son denoising criterion described in Section 3 as our penalty
term. This MPLE approach was first proposed in [7]. The
MPLE can also be computed using the EM algorithm. In this
case, the E-Step remains the same as above and the M-Step is
computed by applying the translation-invariant denoising al-
gorithm [4, 5] to the usual M-step result prior to re-computing
the E-Step (see [7] for further details).

5. ADAPTING TO UNKNOWN TURBID MEDIA

One of the major challenges in practical imaging problems is
that the characteristics of the turbid medium are usually not
known precisely. In particular, the values of system param-
eters {αi} and σ2 are unknown and therefore must be esti-
mated along with λ. We can formulate this as a joint MLE
problem, seeking to find values of the system parameters and
λ which jointly maximize the Poisson likelihood function (or
penalized likelihood). At first glance, it may appear that this
joint MLE problem may be intractable, but it turns out to have
a rather simple solution which is one of the main contributions
of this paper.

The basic solution approach is as follows. First, the MLEs
of the gain factors {αi}k

i=1 can be computed separately from
λ and σ2 due to the following observation. Consider the
statistics

Si =
n∑

j=1

Xi,j , i = 1, . . . , k,

the subscript j indexes the pixels in each image. These statis-
tics are simply the total photon counts for each image. Due to
the normalization of λ and the matrices {Pi} in our model, it
follows that

Si ∼ Poisson(αi), i = 1, . . . , k.

It is well-known that the conditional distribution of Xi given
Si is multinomial with parameters µi = Piλ (see [2]). There-
fore, the likelihood factorizes into Poisson factors, each in-
volving one pair (αi, Si), and multinomial factors, each in-
volving λ and one triple (Pi, Xi, Si). Consequently, the
MLEs of the gain factors {αi} can be obtained separately
from λ and σ2 and are given by the simple formula α̂i = Si,
i = 1, . . . , k. Now recall that the matrices {Pi} are para-
metric in σ2. To find the MLEs of λ and σ2 we consider
a range of candidate values for σ2 and for each one we use
the EM algorithm described above (with each αi set to its
MLE α̂i) to compute the MPLE, denoted by λ̂(σ2), and the
corresponding maximum penalized likelihood value, denoted
L(σ2). This can be done exhaustively (over a discretized
range of σ2 values) or systematically (assuming unimodality
of the maximum penalized likelihood as a function of σ2 and
employing a bisection method). The value of σ2 that results
in the highest penalized likelihood value L(σ2) is the MLE of
σ2, denoted by σ̂2. The MLE of λ is then λ̂(σ̂2).

6. A TRT IMAGING EXAMPLE

The potential of the proposed EM algorithm is evaluated in
the following simulation study. Using the λ intensity function
depicted in Figure 2a, a ballistic image is generated using low
photon count Poisson data and a diffuse image is generated by
first blurring λ using a high variance blurring kernel and then



generating a large number of photons from the blurred inten-
sity function. The reconstruction based only on the ballistic
photon data is depicted in Figure 2c, and the reconstruction
using only the diffuse image and assuming perfect knowl-
edge of the blurring variance σ2 is depicted in Figure 3a).
Figure 3b shows the reconstruction based on both ballistic
and diffuse photon data and assuming perfect knowledge of
attenuation factors (α1, α2) and blurring variance (σ), using
the EM algorithm described in Section 4. Using the adap-
tive MLE scheme described in Section 5, the attuenation fac-
tors and blurring variance were jointly estimated along with
λ, and the resulting intensity estimate shown in (Figure 3c).
Table 1 summarizes the reconstuction errors over 10 indepen-
dent trials of the experiment. As expected, the combined (bal-
listic+diffuse) oracle reconstruction performs best, with the
combined reconstruction with ML estimation of the gain and
diffusion parameters close behind.

The algorithm developed in Section 5 the final reconstruc-
tion is the estimate with largest likelihood value chosen from
a set of reconstructed images generated using different σ2

values. In all our experiments, the likelihood appears to be
unimodal in σ2 (one such likelihood is seen in (Figure 3d)),
allowing for systematic searches such as a bisection method.
We conjecture that the likelihood is always unimodal in σ2,
but we have not yet proved this result.

(a) MPLE Diffuse (b) MPLE Ballistic + Diffuse

(c) MPLE Ballistic + Diffuse
w/ Unknown parameters

(d) Log-Likelihood Plot

Fig. 3. Examples of TRT image reconstruction.

Table 1. Summary of TRT image reconstruction errors.
Image PSNR (dB)
Ballistic Image 4.08
Diffuse Image 7.00
MPLE Ballistic 11.90
MPLE Diffuse 9.42
MPLE Ballistic + Diffuse 12.92
MPLE Ballistic + Diffuse w/ unknown params 12.71

7. CONCLUSIONS

This paper proposed a novel MLE reconstruction algorithm
for TMT imaging. The algorithm is based on a combination
of the EM algorithm and Poisson denoising. Our simulation
study demonstrates the potential of our approach, in particular
indicating the added benefit of optimally fusing ballistic and
diffuse photon data. Our future work includes the application
of this theory to real-data experiments, detailed analysis of
fundamental performance limits in TRT imaging, and exten-
sions to inhomogeneous media.
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